今日学院:数学学院(华南理工大学)。新闻。|| 新闻+ || 符号大全、上下标.|| 常用:↑↓ π ΓΔΛμφΣ∈ ∪ ∩ ⊆ ⊇ ⊂ ⊃ ≤ ≥ ≠ ≃ ⁻⁰ ¹ ² ³ ᵈ xi ₀ ₁ ₂ ₃ ᵢ .
“需要有一种对自己的无知的保护意识”。(接上回 ) 证明的温习:第八段. ---- 第七段是给第八段做准备.
---- 引入投影公式 π*(A·E) = π*(G·E) = H·π*E.
(星号是下标)
---- 得到推广形式 π*(Ai·E) = Hi·π*E.
---- 对于 i = d - 1, Chow group 循环数为零.
.
第八段是发掘 π* 的另一性质:
---- 1. π*Bj = rjCj, Cj = π(Bj).
---- 2. rj 是诱导态射 Bj --> Cj 的“degree”.
---- 3. π*(Ad-1·Bj) = Hd-1·π*Bj = rjHd-1·Cj
(投影公式的推广形式,Bj 看作 E)
---- 4. π*(degABj) = rjdegHCj.
(对3应用 deg 的定义:degPQ = Pd-1Q )
---- 5. degABj = rjdegHCj.
(π*(degABj)=degABj, degree 对 π* 不变?)
---- 6. degAB = ΣbjdegABj = ΣbjrjdegHCj ≥ degHC.
(未加说明地 用到 rj ≥ 1)
注:第八段的目标是 degAB ≥ degHC,即上述推导的第6步.
---- 第六至八段是对general hyperplane H 而言,于是对 Hi 也成立.
.
评论:现在就明白了第七段的来由.
---- 原作推广投影公式的动机源于deg.
---- 即为把投影公式作用到形如 Pd-1Q 的对象.
---- 至于构造前述不等式的来由,须考察其用途.
---- 原始投影公式中的 E 是 “prime divisor”,这说明了为何要从Bj入手(而不是直接从B入手).
---- 在整个证明中,B 只出现在第一、五、八段,其中第五段没用到分量形式.
.
小结:π*联系两个事情,一曰“投影公式”,二曰“度的关系”. 实际上,原作在第八段延伸了投影公式中的末尾: π*E = r π(E),其中 r 是诱导态射 E --> π(E) 的度.
.
命题5.2全部温习完毕.