第一段照录如次。A normal projective variety X is Fano if -KX is ample and if X has log canonical singularities. Fano varieties are among the most extensively studied varieties because of their rich geometry. They are of great importance from the point of view of birational geometry, differential geometry, arithmetic geometry, derived categories, mirror symmetry, etc.
第二段照录如次。Given a smooth projective variety W with KW not pseudo-effective, the minimal model program produces a birational model Y of W together with a Mori fibre space structure Y --> Z [5]. A general fibre of Y --> Z is a Fano variety X with terminal singularities. Thus it is no surprise that Fano varieties constitute a fundamental class in birational geometry. It is important to understand them individually and also collectively in families.
.
对照第一段的第一句,似乎每个叫做variety的集合都附带着另一个集合:如第一段的 X ~ KX,这里的 W ~ KW。眼尖的会发现,第一段里的 KX 还带了个符号。不难看出,这个附带的K集合是用来辅助刻画主集合的性质的。(忽然有个想法,我这里也做个主,就把各种 variety 叫做主集合,把相应的K集合叫做它的副集合)。
.
这里的第一句中提到“minimal model program”,大概是指一种手续,应该包含了若干操作。把这个program作用于W,会得到称作“birational model”的集合,记作 Y,并且会得到连带的后果:Y --> Z,称作“Mori fibre space structure”的映射。(按大数学观点,凡是不认识的数学符号,暂时看做集合或映射 —— 正确理解“待定”)。简单地:W ~ Y --> Z。注:波浪号泛指“联系”,这里指代“minimal model program”。
.
第二句,那意思好像是,若从 Y-->Z 中取出个“general fibre”,则取出的这个general bifre 是带有 terminal singularities 的Fano variety X. 暂时不多解释,简记:(Y-->Z) ~ X (Fano variety, with terminal singularities).