yueliusd07017的个人博客分享 http://blog.sciencenet.cn/u/yueliusd07017

博文

最新顶刊现行微波吸收理论文章和低级别刊物反对文章之间的比较(让历史做最终的裁决)

已有 878 次阅读 2024-3-7 18:07 |个人分类:微波吸收|系统分类:科研笔记

以现行微波吸收理论为基础的最新顶刊文章:

The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC, Adv. Mater. 2024, 2314233, 

First published: 21 February 2024

Received: December 27, 2023

Revised: February 19, 2024

https://doi.org/10.1002/adma.202314233

https://onlinelibrary.wiley.com/doi/10.1002/adma.202314233

The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on

 Ce Atoms Modulated yolk@shell FexN@NGC - Ma - Advanced Materials - Wiley Online Library

===============

综述文章:

Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach

ChemPhysMater 2 (2023) 197–206

https://doi.org/10.1016/j.chphma.2022.10.002

https://www.sciencedirect.com/science/article/pii/S2772571522000614?via%3Dihub

Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach

 - ScienceDirect

=======================

科学网—分析一篇微波吸收科普文章中的代表性错误 - 刘跃的博文 (sciencenet.cn):

[1] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che, Emerging Materials and Designs for Low and MultiBand Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?, Advanced Functional Materials, 32 (2022) 2200123.

[2] Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach, ChemPhysMater, 2 (2023) 197-206.

[3] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan, J. Yun, L. Zhang, H. Wu, Advancements in Microwave Absorption Motivated by Interdisciplinary Research, Advanced Materials, 36 (2023) 2304182

[4] Q. An, D. Li, W. Liao, T. Liu, D. Joralmon, X. Li, J. Zhao, A Novel UltraWideband ElectromagneticWaveAbsorbing Metastructure Inspired by Bionic Gyroid Structures, Advanced Materials, 35 (2023) 2300659.

[5] G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu, J. Wang, Ultrasonic Field Induces Better Crystallinity And Abundant Defects at Grain Boundaries to Develop Cus Electromagnetic Wave Absorber, Advanced Materials, 35 (2023) 2305586.

[6] J. Ma, J. Choi, S. Park, I. Kong, D. Kim, C. Lee, Y. Youn, M. Hwang, S. Oh, W. Hong, W. Kim, Liquid Crystals for Advanced Smart Devices with Microwave and MillimeterWave Applications: Recent Progress for NextGeneration Communications, Advanced Materials, (2023).

[7] J. Yan, Q. Zheng, S.P. Wang, Y.Z. Tian, W.Q. Gong, F. Gao, J.J. Qiu, L. Li, S.H. Yang, M.S. Cao, Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching MultiBand Devices, Advanced Materials, 35 (2023) 2300015.

[8] B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen, Y. Wu, L. Yang, J. Zhang, L. Wu, D.W. Zhang, R. Che, HighEntropy Enhanced Microwave Attenuation in Titanate Perovskites, Advanced Materials, 35 (2023) 2210243.

[9] I. Huynen, N. Quiévy, C. Bailly, P. Bollen, C. Detrembleur, S. Eggermont, I. Molenberg, J.M. Thomassin, L. Urbanczyk, T. Pardoen, Multifunctional hybrids for electromagnetic absorption, Acta Materialia, 59 (2011) 3255-3266.

[10] W. Yang, Y. Zhang, G. Qiao, Y. Lai, S. Liu, C. Wang, J. Han, H. Du, Y. Zhang, Y. Yang, Y. Hou, J. Yang, Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites, Acta Materialia, 145 (2018) 331-336.

[11] R.H. Fan, B. Xiong, R.W. Peng, M. Wang, Constructing Metastructures with Broadband Electromagnetic Functionality, Adv Mater, 32 (2020) 1904646.

[12] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, G. Ji, Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities, Adv Mater, 34 (2022) 2106195.

[13] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption, Adv Mater, 28 (2016) 486-490.

[14] H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv Mater, 26 (2014) 8120–8125.

[15] Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption, Adv Mater, 34 (2022) 2107538.

[16] C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced  Materials, 24 (2012) OP98-OP120.

[17] M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic Response and Energy Conversion for Functions and Devices in LowDimensional Materials, Advanced Functional Materials, 29 (2019) 1807398.

[18] P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang, X. Liu, X. Zhang, R. Che, Hierarchical Engineering of DoubleShelled Nanotubes toward HeteroInterfaces Induced Polarization and Microscale Magnetic Interaction, Advanced Functional Materials, 32 (2022) 2202588.

[19] P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang, B. Ouyang, Y. Qian, R. Zhang, R. Che, Synergistic DielectricMagnetic Enhancement via PhaseEvolution Engineering and Dynamic Magnetic Resonance, Advanced Functional Materials, 33 (2023) 2211298.

[20] J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular Patching Engineering to Drive Energy Conversion as Efficient and EnvironmentFriendly Cell toward Wireless Power Transmission, Advanced Functional Materials, 30 (2020) 1908299.

[21] Y. Xia, W. Gao, C. Gao, A Review on GrapheneBased Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption, Advanced Functional Materials, 32 (2022) 2204591.

[22] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption, Advanced Functional Materials, 28 (2018) 1707205.

====================

上述主流刊物的主流理论:

将膜和材料混淆,

采用错误的阻抗匹配理论,

错误地用反射损失RL表征材料,

用膜材料的结构解释膜的微波吸收的机理,

认为是材料的微波吸收导致膜的吸收峰。

------

尽管上述反方对顶刊的诊断观点只发表在抵挡刊物上,但是我们敢于做出上述判断。

判断是否正确,让历史来裁决把!

===========================

============================

下面抵挡刊物文章持完全相反的观点被顶刊多次退稿(多数没有通过编辑部初审,下面的这些文章指出:

膜和材料是不同的东西;界面与膜是不同的;孤立界面与膜中的界面是不同的;

认为RL只能表征膜,不能表征材料;

发现波相消干涉是膜微波吸收的机理,用波动力学取代阻抗匹配理论;

膜材料的结构不能直接与RL相关联,提出角度效应和幅度效应,建立了膜的微波吸收的波动力学理论;

发现膜对微波的吸收量不是膜材料的衰减能力的结果,而是膜强迫膜材料吸收指定量的微波。

  1.   Yue Liu, Michael G. B Drew,Ying Liu, A Theoretical Exploration of Impedance Matching Coefficients for Interfaces and Films, Applied Physics A, 2024, 130, 212

  2. Yue Liu,Ying Liu,Michael G. B Drew,Wave Mechanics of Microwave Absorption in Films - Distinguishing Film from MaterialJournal of Magnetism and Magnetic Materials2024, 593, 171850 ;    The wave mechanics for microwave absorption film – Part 2: The difference between film and material,Preprint, Research Square, 15 Aug, 2023, Supplementarial file

  3. Ying Liu, Michael. G.B. Drew, Yue LiuChapter 4: Fundamental Theory of Microwave Absorption for Films of Porous Nanocomposites: Role of Interfaces in Composite-Fillers, in Porous Nanocomposites for Electromagnetic Interference Shielding, Edited by: Sabu Thomas, Claudio Paoloni, Avinash R. Pai, 2024, Elsevier, [978-0-323-90035-5_B978-0-323-90035-5.00013-1], pp. 59 - 90, https://doi.org/10.1016/B978-0-323-90035-5.00013-1

  4. 刘颖, 刘跃膜的微波吸收机理, 分子科学学报 2023,v.39; No.194(06) 521-527

  5. Ying Liu, Michael G. B. Drew, Yue Liu, A physics investigation on impedance matching theory in microwave absorption film—Part 1: Theory, Journal of Applied Physics, 2023, 134(4), 045303, DOI: 10.1063/5.0153608

  6. Ying Liu, Michael G. B. Drew, Yue Liu, A physics investigation on impedance matching theory in microwave absorption film—Part 2: Problem AnalysesJournal of Applied Physics, 2023, 134(4), 045304, DOI: 10.1063/5.0153612

  7. Ying Liu, Xiangbin Yin, Michael G. B. Drew, Yue Liu, Reflection Loss is a Parameter for Film, not MaterialNon-Metallic Material Science, 2023, 5(1): 38-48.

  8. Ying Liu, Yi Ding, Yue Liu, Michael G. B. Drew. Unexpected Results in Microwave Absorption – Part 1: Different absorption mechanisms for metal-backed film and for materialSurfaces and Interfaces, 2023, 40, 103022

  9. Ying Liu, Yi Ding, Yue Liu, Michael G. B. Drew. Unexpected Results in Microwave Absorption – Part 2:. Angular effects and the wave cancellation theorySurfaces and Interfaces, 2023, 40, 103024

  10. 刘颖,丁一,陈庆阳,刘跃,NiFe2-xMxO4 (M: Ce/Sm/Gd)的制备及其膜的微波吸收性能沈阳师范大学学报 ( 自然科学版 )2023, 41(2),98 - 103

  11. Ying Liu; Xiangbin Yin; M. G. B. Drew; Yue Liu, Microwave absorption of film explained accurately by wave cancellation theoryPhysica B: Condensed Matter, 2023, 666, 415108. (Microwave absorption of film explained accurately by wave cancellation theory2023-02-23 | Preprint, Research Square, DOI: 10.21203/rs.3.rs-2616469/v2Supplementary information: Available comments and our responses.)

  12. Ying Liu, Yue Liu, Drew M.G.B, A re-evaluation of the mechanism of microwave absorption in film – Part 1: Energy conservationMater. Chem. Phys2022, 290,126576.

  13. Ying Liu, Yue Liu, Drew M.G.B, A re-evaluation of the mechanism of microwave absorption in film – Part 2: The Real mechanismMater. Chem. Phys,. 2022, 291, 126601.

  14. Ying Liu, Yue Liu, Drew M.G.B, A re-evaluation of the mechanism of microwave absorption in film  Part 3: Inverse relationshipMater. Chem. Phys2022, 290, 126521.

  15. Liu YLiu Y, Drew MGB. A theoretical investigation of the quarter-wavelength model  part 2: verification and extensionPhysica Scripta 2022 , 97(1) 015806.

  16. Liu Y, Liu Y, Drew MGB. A theoretical investigation on the quarter-wavelength model — part 1: analysisPhysica Scripta 2021 , 96(12) 125003. The problems in the quarter-wavelength model and impedance matching theory in analysising microwave absorption material, 2021-08-30 | Preprint, Research Square, DOI: 10.21203/rs.3.rs-206241/v1

  17. Liu Y, Drew MGB, Li H, Liu Y. A theoretical analysis of the relationships shown from the general experimental results of scattering parameters s11 and s21 – exemplified by the film of BaFe12-iCeiO19/polypyrene with i = 0.2, 0.4, 0.6Journal of Microwave Power and Electromagnetic Energy 2021 , 55(3) 197-218.

======================

现代隐身材料(微波吸收)理论中的阻抗匹配系数理论错误了(最新发表的论文)

https://blog.sciencenet.cn/blog-3589443-1424078.html

现行微波吸收理论混淆了膜和材料的区别(公开的学术擂台,接受挑战)

https://blog.sciencenet.cn/blog-3589443-1421765.html

Fundamental theory of microwave absorption for films

https://blog.sciencenet.cn/blog-3589443-1422642.html

https://doi.org/10.1016/B978-0-323-90035-5.00013-1

现代微波吸收领域的理论框架已经被新理论推翻

https://blog.sciencenet.cn/blog-3589443-1418636.html

Questions from Acaudio (with answers attached)

https://blog.sciencenet.cn/blog-3589443-1423751.html

分析一篇微波吸收科普文章中的代表性错误

https://blog.sciencenet.cn/blog-3589443-1423842.html

坚持基础研究,做有科学意义的工作(做学问的哲理)

https://blog.sciencenet.cn/blog-3589443-1424057.html

在科学上,多数人的错误(无论是学术上的还是学术道德上的),能不能纠正

https://blog.sciencenet.cn/blog-3589443-1422831.html

=======================

科学网—华科瞿金平院士团队:用于多场景快速储能和电磁屏蔽的自组装MXene基相变复合材料 - 纳微快报的博文 (sciencenet.cn)

科学网—黄小萧/车仁超等:微量铁注入对石墨烯介电与吸波性能的调控机制 - 纳微快报的博文 (sciencenet.cn)



https://blog.sciencenet.cn/blog-3589443-1424431.html

上一篇:做学问更是为了继承人类最优秀的成果,其次才是创新(科学研究的指导思想)
下一篇:一个鼓吹创新、蔑视继承的时代是标新立异、不承认他人工作的时代
收藏 IP: 39.152.24.*| 热度|

6 宁利中 许培扬 檀成龙 杨正瓴 郑永军 黄河宁

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-14 08:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部