||
This is an in-mail from TYUST.
本期开始加开窗口,推出科学网特色博主,有用链接等。
心中有块石头...
(接上回*)跳回定理1.6的证明*。(继续第二段证明)。
We want to apply Proposition 5.9, so we need to replace X with a Q-factorial one.
评论:命题5.9的第一个主条件,(X, B) 是 QPE,结合其余条件,最终证得存在 Q-divisor。这里,看不出为何想要应用命题5.9?(不过,从段尾看,做了一系列替换,然后说 “we can assume X is Q-factorial”,倒呼应了段首的意图)。
Since A is very ample and A^d<=r, X belongs to a bounded family of varieties depending only on d, r.
评论:看不出(?)。也许是出自定义(bounded family of varieties)?暂时把这句话作为已知命题。
Thus we can pick a resolution phi: W --> X so that if Γ is the sum of the exceptional divisors, then (W, Γ) belongs to a bounded family of pairs depending only on d, r.
评论:为何想到这样做?换个思路,见到属于有界族的 X,就如此办理。(提问,意味着“think”、“study”;你说啥就是啥,意味着“learn”)。
Let X' be a minimal model of (W, (1-eps/2)Γ) over X.
评论:注意minimal model出现的上下文。这里的秩序是:有界簇,resolution,有界配对,minimal model。
Since A, A-B, and Kx + B are R-Cartier, Kx is Q-Cartier, hence (X, 0) is eps-lc.
评论:A, A-B, Kx+B, R-Cartier ==> Kx, Q-Cartier ==> (X, 0), eps-lc.
We can write
Kw + (1-eps/2)Γ = phi* Kx + E
where E is effective with the same support as Γ.
评论:式子左端是配对(W, ...)的“扩副”。右端怎么出来的?(可能要找与phi*有关的等式)。
By the negativity lemma, E is contracted over X', hence X'-->X is just a Q-factorialisation of X.
评论:靠近 Q-factorial了。“negative lemma”在哪儿呢?(想起葛优...满地找钱包)||
If X is not Q-factorial, then X' is not unique but since (W, Γ) belongs to a bounded family of pairs, we can choose X' so that it belongs to a bounded family of varieties depending only on d, r.
评论:若 X 不是 Q-factorial,则 X' 不唯一。这里的“不唯一”,意味着“有选择余地”。(W, Γ) 有界,意味着,可选择X'属于有界族。
Let Kx' + B' and A' be the pullbacks of Kx + B and A.
评论:这个好像也有点突兀?
We can choose a very ample divisor H' on X' with bounded H'^d such that H' - A' is ample.
评论:这是在靠向命题5.9的条件...(这里搞出 H'-A' ample)
This ensures H' - B' is ample too as A' - B' is nef.
评论:(这里搞出 H' - B' ample)。H' 将扮演大内总管?
Now
lct(X, B, |A|R) = lct(X', B', |A'|R) >= lct(X', B', |H'|R).
评论:一头雾水(?)
Therefore, replacing X, B, A with X', B', H', and replacing r accordingly, we can assume X is Q-factorial.
评论:一头雾水(?)
.
小结:第二段证明完成大半(还有5行半)。
* * *
一般而言,读文章总会遇到“坎儿”。今天忽然想到,可能存在“隐含的调用”,即作者头脑中会指向一些内容,但并没有写出来。以前听课的时候,我也感到,讲课的人头脑中可能有“另一块黑板”,他会看那上面的内容(不见得讲出来)。其实讲课的时候,有时也会意识到自己在看“另一块黑板”。有时你会清楚地知道,学生们不可能马上懂得,得学完后面的内容,再回头看时才可能懂。
这就体现出人脑和机器的差别:前者忽略一些内容也能继续运行,后者一定得“完全调用”否则就不运行了。(严格来说,证明中所有的“调用”都该写出来)。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 22:24
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社