||
两输入两阶系统的能达丰富性
若两输入两阶系统的线性离散系统 $\varSigma(A,B)$ 的各矩阵可表示为(或可变换为)
$A_{N}=[B,AB,...,A^{N-1}B]$
$A=\left[\begin{array}{cc} \lambda_{1} & 0\\ 0 & \lambda_{2} \end{array}\right]\qquad B=\left[B_{1}\;B_{2}\right]=\left[\begin{array}{cc} b_{11} & b_{12}\\ b_{21} & b_{22} \end{array}\right]$
不失一般性,可通过对输入变量进行变换有
$b_{11},b_{22},\det\left(B\right)=b_{11}b_{22}-b_{12}b_{21}>0$
因此,当 $0<\lambda_{1}<\lambda_{2}$ ,在 $b_{11}b_{22}\lambda_{1}^{s}-b_{12}b_{21}\lambda_{2}^{s}$ 恒为正时,系统 $\varSigma(A,B)$ 的 $N$ 步能达丰富性为
$V_{2}(C_{2}(A_{N}))=V_{2}(C_{2}(A_{N}^{(1)}))+V_{2}(C_{2}(A_{N}^{(2)}))+\frac{\left(1-\lambda_{1}^{N}\right)\left(1-\lambda_{2}^{N}\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}\det\left(B\right)$
其中 $V_{2}(C_{2}(A_{N}^{(i)}))$ 为单输入系统 $\varSigma(A,B_{i})$ 的 $N$ 步能达丰富性.
此时,当 $0<\lambda_{1}<\lambda_{2}<1$ 时,系统 $\varSigma(A,B)$ 的无限时间能达丰富性为
$\lim_{N\rightarrow\infty}v_{r,N}=\frac{\left[\left|b_{11}b_{21}\right|+\left|b_{12}b_{22}\right|\right]\left(\lambda_{2}-\lambda_{1}\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{1}\lambda_{2}\right)}+\frac{\det\left(B\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}$
当系统状态解耦,即
$B=\left[\begin{array}{cc} b_{11} & 0\\ 0 & b_{22} \end{array}\right]$
则有
$v_{r,N}=b_{11}b_{22}\frac{\left(1-\lambda_{1}^{N}\right)\left(1-\lambda_{2}^{N}\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}$
$\lim_{N\rightarrow\infty}v_{r,N}=\frac{b_{11}b_{22}}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}$
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-27 00:41
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社