||
挑战物理学:激光可以阻挡光本身
诸平
据加拿大渥太华大学(University of Ottawa, , 25 Templeton Street, Ottawa, Ontario, K1N 6N5, Canada)2024年11月24日提供的消息,挑战物理学:激光可以阻挡光本身(Defying Physics: Lasers That Can Block Light Itself)。
研究人员通过观察光线如何阻挡其他光线,从而产生可见的阴影,取得了重大突破。这一非凡的现象是在他们使用绿色激光器和红宝石晶体的实验中首次发现的,它提出了操纵光的新方法,可能会给光学技术带来革命性的变化。相关研究结果于2024年11月14日已经在《光学》(Optica)杂志网站发表——Raphael A. Abrahao, Henri P. N. Morin, Jordan T. R. Pagé, Akbar Safari, Robert W. Boyd, Jeff S. Lundeen. Shadow of a laser beam. Optica, 2024, 11(11): 1549-1555. DOI: doi:10.1364/OPTICA.534596. Published 14 November 2024. https://doi.org/10.1364/OPTICA.534596
参与此项研究的除了来自加拿大渥太华大学的研究人员之外,还有来自美国布鲁克黑文国家实验室(Brookhaven National Laboratory, Upton, New York, USA)、加拿大滑铁卢大学(University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada)、美国威斯康星大学麦迪逊分校(University of Wisconsin-Madison, Madison, Wisconsin, USA)、美国罗彻斯特大学(University of Rochester, Rochester, New York, USA)、渥太华大学-加拿大国家研究委员会极端光子学联合中心(Joint Centre for Extreme Photonics, University of Ottawa - National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada) 的研究人员。
光相互作用的突破性发现(Groundbreaking Discovery in Light Interaction)
渥太华大学物理系(Department of Physics at uOttawa)副教授杰夫·伦丁(Jeff Lundeen)和博伊德研究小组(Boyd Research Group)取得了一项突破性的发现,挑战了我们对光行为的理解。研究人员第一次以一种以前认为不可能的方式观察到光与自身的相互作用。
通常情况下,光子(photons)即光粒子(particles of light)通过彼此而不受干扰。然而,这个实验揭示了一个非凡的现象:激光束投射的阴影模仿了固体物体产生阴影的行为。
杰夫·伦丁教授解释说:“我们已经证明,在一定条件下,光线实际上可以阻挡其他光线,形成阴影。这为我们以前从未想过的控制和操纵光的方式开辟了令人兴奋的新可能性。”
两个光源之间的相互作用在屏幕上产生了一个阴影,在绿色激光阻挡蓝光的黑暗区域可见。
实验见解与观察(Experimental Insights and Observations)
该团队的实验设置包括将绿色激光束照射红宝石晶体,同时用蓝光从侧面照射红宝石晶体。
这种排列在表面上创造了一个肉眼可见的阴影。这种效应的产生是由于红宝石晶体中一种被称为反向吸收饱和(reverse saturation of absorption)的现象,这种现象允许绿色激光阻挡蓝光的通过,从而产生一个跟随激光束轮廓的黑暗区域。
渥太华大学物理系副教授杰夫·伦丁指出:“我们已经证明,在某些条件下,光线实际上可以阻挡其他光线,形成阴影。”
激光诱导阴影的本质(The Nature of Laser-Induced Shadows)
杰夫·伦丁教授说:“特别令人着迷的是,这种激光阴影的表现与传统阴影非常相似。在这种情况下它遵循物体的形状,我们的激光束甚至符合它落在表面的轮廓,就像树枝的阴影一样。”
研究人员开发了一种理论模型来预测阴影的对比度,与他们的实验数据非常吻合。他们发现,阴影的黑暗程度随着绿色激光束的功率成比例地增加,与晴天的典型阴影相比,最大对比度达到22%。
潜在应用和未来研究(Potential Applications and Future Research)
这一发现扩大了我们对光与物质相互作用的理解,并具有实际应用的潜力。杰夫·伦丁教授补充说:“我们对这在光学开关、制造和成像技术等领域开辟的可能性感到兴奋。”
这项研究强调了基础研究在重塑我们对物理世界的理解方面的重要性。随着科学家们继续探索这一现象的含义,它可能会导致光子学、非线性光学和其他基于光的技术的新进展。
本研究得到了加拿大第一卓越研究基金(转型量子技术){ Canada First Research Excellence Fund (Transformative Quantum Technologies)}、加拿大首席研究(Canada Research Chairs)、加拿大自然科学与工程研究理事会(Natural Sciences and Engineering Research Council of Canada)、加拿大卓越首席研究(Canada Excellence Research Chairs)、加拿大政府(Government of Canada),加拿大研究生奖学金-硕士(Canada Graduate Scholarships - Master’s);美国能源部{U.S. Department of Energy (QuantISED)}、美国布鲁克海文国家实验室{Brookhaven National Laboratory (LDRD grant 22-22)}的资助或支持。
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
uOttawa Physicists Make Laser Cast a Shadow
Lasers That Cast Shadows? Physics Takes a Surprising Turn
Light, being massless, casts no shadow; under ordinary circumstances, photons pass right through each other unimpeded. Here, we demonstrate a laser beam acting like an object— the beam casts a shadow upon a surface when the beam is illuminated by another light source. We observe a regular shadow in the sense it can be seen by the naked eye, it follows the contours of the surface it falls on, and it follows the position and shape of the object (the laser beam). Specififically, we use a nonlinear optical process involving four atomic levels of ruby. We are able to control the intensity of a transmitted laser beam by applying another perpendicular laser beam. We experimentally measure the dependence of the contrast of the shadow on the power of the laser beam, fifinding a maximum of approximately 22%, similar to that of a shadow of a tree on a sunny day. We provide a theoretical model that predicts the contrast of the shadow. This work opens new possibilities for fabrication, imaging, and illumination.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-26 22:27
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社