zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

Reachable abundance of linear systems with Jordan matrix

已有 3136 次阅读 2017-11-17 08:56 |个人分类:reachable abundance|系统分类:科研笔记

Reachable abundance of linear discrete systems with Jordan system matrix


         When the linear discrete systems are with some repeated roots, the system matrices can be transformed as the upper Jordan matrices, that is, the matrices of the system models can be represented as

$A=\left[\begin{array}{ccccc} \lambda & 0 & 0 & \cdots & 0\\ 1 & \lambda & 0 & \cdots & 0\\ 0 & 1 & \lambda & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \lambda \end{array}\right],\quad B=\left[\begin{array}{c} b_{1}\\ b_{2}\\ b_{3}\\ \vdots\\ b_{n} \end{array}\right]$

Let

$\zeta_{n,k}=A^{k}B=\left[\begin{array}{c} \lambda^{k}b_{1}\\ k\lambda^{k-1}b_{1}+\lambda^{k}b_{2}\\ \frac{k(k-1)}{2}\lambda^{k-2}b_{1}+k\lambda^{k-1}b_{2}+\lambda^{k}b_{3}\\ \vdots\\ \sum_{i=1}^{n}\frac{k!}{(i-1)!(k-i+1)!}\lambda^{k-i+1}b_{i} \end{array}\right]$

where

$\frac{k!}{(i-1)!(k-i+1)!}\lambda^{k-i+1}=0\quad\textrm{if}\;k-i+1<0$


It can be proven that there exists the transformation matrices

$P=\left[\begin{array}{ccccc} 1 & & & & 0\\ 0 & 1\\ 0 & 0 & 1\\ & & & \ddots\\ -\frac{b_{n}}{b_{1}} & -\frac{b_{n-1}}{b_{1}} & -\frac{b_{n-2}}{b_{1}} & & 1 \end{array}\right]\times\cdots\times\left[\begin{array}{ccccc} 1 & & & & 0\\ 0 & 1\\ -\frac{b_{3}}{b_{1}} & -\frac{b_{2}}{b_{1}} & 1\\ & & & \ddots\\ 0 & 0 & 0 & & 1 \end{array}\right]\times\left[\begin{array}{ccccc} 1 & & & & 0\\ -\frac{b_{2}}{b_{1}} & 1\\ 0 & 0 & 1\\ & & & \ddots\\ 0 & 0 & 0 & & 1 \end{array}\right]$

to make that the following equation holds,

$P\zeta_{n,k}=\beta_{n,k}=b_{1}\left[\begin{array}{c} \lambda^{k}\\ k\lambda^{k-1}\\ \frac{k(k-1)}{2}\lambda^{k-2}\\ \vdots\\ \frac{k!}{(n-1)!(k-n+1)!}\lambda^{k-n+1} \end{array}\right]$

that is, $\beta_{n,k}$ has sth. to do with $b_{1}$ but not $b_{i}$ $(i>1)$ . Therefore, the reachable abundance can be computed as


$\textrm{Vol}(R_{r,N})=V_{n}\left(C_{n}\left([B,AB,...,A^{N-1}B]\right)\right)$

          $=V_{n}\left(C_{n}\left([\zeta_{n,0},\zeta_{n,1},...,\zeta_{n,N-1}]\right)\right)$

          $=\sum_{(k_{1},k_{2},\cdots,k_{n})\in\Omega_{0,N-1}^{n}}\left|\mathrm{det}\left(\left[\beta_{n,k_{1}},\beta_{n,k_{2}},\cdots,\beta_{n,k_{n}}\right]\right)\right|$

where $\det(P)=1$ , $\Omega_{0,N-1}^{n}$ is constituted by the all possible multi-tuple $$ which elements are picked from the set $\{0,1,2,\cdots,N-1\}$ and sorted by the values..

      Because that above $\beta_{n,k}$ has sth. to do with $b_{1}$ but not $b_{i}(i>1)$ , the reachable abundance is only related to the first row, but not other rows, of the input matrix $B$ according to the upper Jordan matrix $A$ . The above conclusion is consistency with the following reachability conclusion in the control theory.

“The reachability is only related to the first/last row of the input matrix $B$ according to the upper/lower Jordan matrix $A$ .”




https://blog.sciencenet.cn/blog-3343777-1085609.html

上一篇:The Variable Spaces in Fuzzy Control Systems
下一篇:Infinite-time reachable abundance of linear systems with Jor
收藏 IP: 27.17.74.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 06:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部