zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

Infinite-time reachable abundance of linear systems with Jor

已有 3279 次阅读 2017-11-17 11:25 |个人分类:reachable abundance|系统分类:科研笔记

Infinite-time reachable abundance of linear discrete systems with Jordan system matrix

      In my blog article “Reachable abundance of linear discrete systems with Jordan system matrix”(http://blog.sciencenet.cn/blog-3343777-1085609.html) it is proven that the reachable abundance is only related to the first row, but not other rows, of the input matrix $B$ according to the upper Jordan matrix $A$ . Therefore, we have the following volume computing for the infinite-time reachable abundance of linear discrete systems with Jordan system matrix.

     It is assumed that the linear discrete systems $\varSigma(A,B)$ are with some repeated roots, the system matrices can be transformed as the upper Jordan matrices, that is, the matrices of the system models can be represented as

$A=\left[\begin{array}{ccccc} \lambda & 0 & 0 & \cdots & 0\\ 1 & \lambda & 0 & \cdots & 0\\ 0 & 1 & \lambda & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \lambda \end{array}\right],\quad B=\left[\begin{array}{c} b_{1}\\ b_{2}\\ b_{3}\\ \vdots\\ b_{n} \end{array}\right],\quad\Gamma=\left[\begin{array}{c} b_{1}\\ 0\\ 0\\ \vdots\\ 0 \end{array}\right],$

The the infinite-time reachable abundance of linear discrete systems with Jordan system matrix can be proven as

    $\textrm{Vol}(R_{r,\infty})=V_{n}\left(C_{n}\left([B,AB,...,A^{k}B,...,]\right)\right)$

              $=V_{n}\left(C_{n}\left([\Gamma,A\Gamma,...,A^{k}\Gamma,...,]\right)\right)$

              $=\textbfsymbol{\frac{\left|b_{1}^{n}\right|}{\left(1-\lambda\right)^{n}\left(1-\lambda^{2}\right)^{n(n-1)/2}}}$




https://blog.sciencenet.cn/blog-3343777-1085637.html

上一篇:Reachable abundance of linear systems with Jordan matrix
收藏 IP: 27.17.74.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 07:21

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部