||
用鹿角干细胞再生骨骼
诸平
Credit: Unsplash/CC0 Public Domain
据物理学家组织网(phys.org)2023年3月14日报道,来自中国研究机构的科学家们合作进行了一项哺乳动物器官再生的研究,发现鹿角胚芽祖细胞(deer antler blastema progenitor cells)可能是高等脊椎动物保守再生细胞的来源(Regenerating bone with deer antler stem cells),为进一步探索哺乳动物的器官再生提供了遗传与组织学理论基础。相关研究结果于2023年2月23日已经在《科学》(Science)杂志网站发表了两篇论文,其中一篇是中国长春中国农业科学院特种动植物科学研究所(Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China)和西班牙阿尔瓦塞特省的卡斯蒂利亚-拉曼查大学{Universidad de Castilla–La Mancha (UCLM), Albacete, Spain}的研究人员合作完成的,详见Datao Wang, Tomas Landete-Castillejos. Stem cells drive antler regeneration. Science, 23 Feb 2023, Vol 379, Issue 6634, pp. 757-758. DOI: 10.1126/science.adg9968. https://www.science.org/doi/10.1126/science.adg9968. 本研究得到了中国国家自然科学基金(National Natural Science Foundation of China 31901058)、中国国家留学基金管理委员会(China Scholarship Council)以及西班牙国家癌症协会{Spanish National Cancer Association (AECC) UCLM 2022-AYUDA-33655}的支持。王大涛(Datao Wang音译)等人的文章是对同日同期发表于《科学》(Science)杂志的另外一篇文章的点评。
另外一篇是由来自中国和丹麦的研究人员合作完成,其中包括来自中国西安西北工业大学(Northwestern Polytechnical University, Xi’an, China)、中国长春科技学院(Changchun Sci-Tech University, China)、中国西安第四军医大学(现空军军医大学,Fourth Military Medical University, Xi’an, China)、中国长春中医药大学附属医院(The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China)、中国长春吉林农业大学(Jilin Agricultural University, Changchun, China)、中国长春吉林大学(Jilin University, Changchun, China)、中国昆明中国科学院动物进化与遗传前沿交叉卓越创新中心(Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China)以及丹麦哥本哈根大学(University of Copenhagen, Denmark)的研究人员参与了此项研究,具体详见Tao Qin, Guokun Zhang, Yi Zheng, Shengyou Li, Yuan Yuan, Qingjie Li, Mingliang Hu, Huazhe Si, Guanning Wei, Xueli Gao, Xinxin Cui, Bing Xia, Jing Ren, Kun Wang, Hengxing Ba, Zhen Liu, Rasmus Heller, Zhipeng Li, Wen Wang, Jinghui Huang, Chunyi Li, Qiang Qiu. A population of stem cells with strong regenerative potential discovered in deer antlers. Science, 23 Feb 2023, Vol 379, Issue 6634, pp. 840-847. DOI: 10.1126/science.add048. https://www.science.org/doi/10.1126/science.add0488
研究人员认为这些发现在临床骨修复中有应用价值。随着关键特征基因的激活,它有可能被用于骨骼、长骨或肢体再生的再生医学(regenerative medicine)。
肢体和器官再生是医学界(medical science)梦寐以求的技术。人类有一些有限的再生能力,主要是在我们的肝脏。如果切除一部分肝脏,剩下的肝脏就会开始生长,直到达到原来的功能大小。肺、肾和胰腺也能做到这一点,尽管没有那么彻底或有效。
与此相比,蜥蜴(lizard)可以再生尾巴,斑马鱼(zebrafish)可以再生鳍(fin),龙虾(lobster)可以再生爪子,蝾螈(axolotl salamander)可以重建器官、四肢、脊髓,甚至丢失的脑组织(brain tissue)。
我们不会在这里提到水螅(hydra),只是因为在被切成两半后,它能够再生出一个完整的头部(就像另一半能再生出一个新的身体,形成两个水螅一样),引发了太多关于“自我”意义的哲学问题,无法在这里解决。至少这超出了目前医学研究人员的雄心,他们正在考虑对人体组织再生进行更温和的尝试。
有一种哺乳动物以一种非常常规和可靠的方式进行再生行为,它就是鹿。公鹿的鹿角每年都能再生成有生命的组织,血管(blood vessels)和神经包裹着快速生长的骨骼结构。研究人员记录了鹿角再生过程中存在的胚状结构(blastema-like structure),类似于两栖动物肢体再生(amphibian limb regeneration)的结构,这表明脊椎动物组织再生具有一种保守的生物学特征。
还有一种哺乳动物的肢体再生能力有限——老鼠。老鼠的前脚趾尖可以再生。一项跨物种比较发现,与鹿角胚状结构中发现的类似的再生祖细胞也存在于小鼠再生前趾尖端,但在非再生小鼠脚趾中不存在。这些基因也不同于在蝾螈四肢或斑马鱼鳍中发现的基因。
根据这项研究,“这表明存在相对保守的细胞和分子机制(molecular mechanisms),对于仅有的两个已知的哺乳动物附属物器官再生能力的案例。”
为了充分记录鹿角再生过程中的基因转录动态和评估细胞类型的变化,研究小组对鹿角在不同再生阶段的单细胞RNA测序和雄性梅花鹿(male sika deer)的染色体水平基因组组装进行了研究。研究人员分析了74730个覆盖鹿角再生关键阶段的细胞,在青蛙(frogs)和蝾螈(axolotl)的肢体再生以及小鼠的趾尖再生过程中,发现了一些重要的细胞类型之间的显著联系。
在小鼠身上进行了一项实验,以测试这些祖细胞(progenitor cells)的作用。在实验中,鹿角祖细胞被引入实验室小鼠的头部。在小鼠的头盖骨上出现了鹿角状的骨软骨(Antler-like boney cartilage),这些软骨不是来自局部组织,而是完全来自移植干细胞(transplanted stem cells)的生长,这表明科学家们成功地分离出了再生所需的必要细胞类型(essential cell types for regeneration)。
此项研究得到了中国国家自然科学基金会(National Natural Science Foundation of China: 31970392, 32030016, 32122083, U20A20403, 32225009 and 82122043)、中国科学院(Chinese Academy of Sciences: XDA16010105)、中国国家重点研发计划项目(National Key Research and Development Program of China: 2021YFA0805000)以及中国西安西北工业大学人才队伍建设基金——交叉学科研究基金(Talents Team Construction Fund of Northwestern Polytechnical University the Research Funds for Interdisciplinary Subject: NWPU 19SH030408)的资助。
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
https://zhuanlan.zhihu.com/p/610203606
Science | 新发现!中国团队揭示鹿角「胚芽祖细胞」促进再生机制,为器官再生提供理论基础
A tale of antler regeneration (DOI: 10.1126/science.add048)
Mammals have largely lost the capacity to regenerate appendages or organs. One exception is the annual regeneration of antlers in deer, which provides a valuable model for studying organ regeneration in mammals. Qin et al. constructed a comprehensive cell atlas of antler regeneration using single-cell transcriptomics (see the Perspective by Wang and Landete-Castillejos). Antler regeneration involves a stem cell–based regenerative process. A key population of antler blastema progenitor cells (ABPCs) displays self-renewal, osteogenic-chondrogenic differentiation, and bone tissue repair potential. Cross-species comparison revealed that the mouse has a similar type of ABPC (in the regenerative digit tip), but nonmammalian species do not, suggesting that mammals may have a distinctive regeneration mechanism. —SMH
Abstract (DOI: 10.1126/science.add048)
The annual regrowth of deer antlers provides a valuable model for studying organ regeneration in mammals. We describe a single-cell atlas of antler regrowth. The earliest-stage antler initiators were mesenchymal cells that express the paired related homeobox 1 gene (PRRX1+ mesenchymal cells). We also identified a population of “antler blastema progenitor cells” (ABPCs) that developed from the PRRX1+ mesenchymal cells and directed the antler regeneration process. Cross-species comparisons identified ABPCs in several mammalian blastema. In vivo and in vitro ABPCs displayed strong self-renewal ability and could generate osteochondral lineage cells. Last, we observed a spatially well-structured pattern of cellular and gene expression in antler growth center during the peak growth stage, revealing the cellular mechanisms involved in rapid antler elongation.
Abstract (DOI: 10.1126/science.adg9968)
Understanding the biology underlying the regeneration of animal limbs, organs, and tissues could be a source of potential applications in medicine. Antlers of deer are a particularly good example because they show complete morphological, structural, and functional regeneration every year, unlike compensatory regeneration in response to injury, for example, as seen in the liver (1, 2). An outstanding characteristic of the antler is the speed of regeneration: They can grow up to 2.75 cm per day and reach up to 15 kg in mass and 120 cm in length in ~3 months (3). How do deer antlers achieve such rapid and complete regeneration? On page 840 of this issue, Qin et al. (4) identify a population of antler blastema progenitor cells (ABPCs) that are responsible for the antler regenerative cycle. These findings add to the emerging idea that blastema progenitor cells are a common stem cell type in mammalian appendage regeneration.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 01:44
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社