Dr Xuefeng Pan's Web Log分享 http://blog.sciencenet.cn/u/duke01361 分子遗传学、分子病理学、分子药理学等研究者、教师、诗人、译者、管理者

博文

施一公院士等人的工作促进了冷冻电镜技术获得诺贝尔奖

已有 6899 次阅读 2015-8-23 11:36 |个人分类:My Ideas|系统分类:观点评述

施一公院士等人的工作促进了冷冻电镜技术获得诺贝尔奖,我觉得应该是这样的逻辑关系。如果这项技术是施一公团队发明创造的,加上他们对拼接体的解析,肯定会获奖!

 

冷冻电镜技术应该授予诺贝尔奖人员排名:可能在施一公院士之前已经超过三个人了!

 

TRPV1这个膜蛋白利用低温电镜已经做到了3.4A http://www.ncbi.nlm.nih.gov/pubmed/24305160

通讯作者之一:http://physio.ucsf.edu/julius/julius.html

通讯作者之二:http://cryoem.ucsf.edu/

陈先生极有可能接低温电镜获得诺贝尔奖,因为他就是搞电子显微镜的(见上面链接)

 

YIFAN CHENG(程亦凡)
 
 Associate Professor

Education:

1982 - B.Sc. in Physics,
            Department of Physics,
Wuhan University,
            Wuhan, China
1987 - M.Sc. in Physics,
            Department of Physics, Wuhan University,
            Wuhan, China
1991 - Ph.D. in Physics,
            Institute of Physics, Chinese Academy of Sciences
            Beijing, China

 

Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.

Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

Liao M(1), Cao E, Julius D, Cheng Y.

Author information:
(1)1] Keck Advanced Microscopy Laboratory, Department of Biochemistry and
Biophysics, University of California, San Francisco, California 94158-2517, USA
[2].

Comment in
   Nature. 2013 Dec 5;504(7478):93-4.

Transient receptor potential (TRP) channels are sensors for a wide range of
cellular and environmental signals, but elucidating how these channels respond to
physical and chemical stimuli has been hampered by a lack of detailed structural
information. Here we exploit advances in electron cryo-microscopy to determine
the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking
the side-chain resolution barrier for membrane proteins without crystallization.
Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central
ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore
loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide
extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain'
interacts with the S4-S5 linker, consistent with its contribution to allosteric
modulation. Subunit organization is facilitated by interactions among cytoplasmic
domains, including amino-terminal ankyrin repeats. These observations provide a
structural blueprint for understanding unique aspects of TRP channel function.

PMCID: PMC4078027
PMID: 24305160  [PubMed - indexed for MEDLINE]

施一公院士的工作

Science. 2015 Aug 20. pii: aac8159. [Epub ahead of print]

Structural basis of pre-mRNA splicing.

Hang J(1), Wan R(1), Yan C(1), Shi Y(2).

Author information:
(1)Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint
Center for Life Sciences, Center for Structural Biology, School of Life Sciences,
Tsinghua University, Beijing 100084, China. (2)Ministry of Education Key
Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences,
Center for Structural Biology, School of Life Sciences, Tsinghua University,
Beijing 100084, China. shi-lab@tsinghua.edu.cn.

Splicing of pre-mRNA is performed by the spliceosome. In the cryo-EM structure of
the yeast spliceosome, U5 snRNP acts as a central scaffold onto which U6 and U2
snRNAs are intertwined to form a catalytic center next to Loop I of U5 snRNA.
Magnesium ions are coordinated by conserved nucleotides in U6 snRNA. The intron
lariat is held in place through base pairing interactions with both U2 and U6
snRNAs, leaving the variable-length middle portion on the solvent-accessible
surface of the catalytic center. The protein components of the spliceosome anchor
both 5'- and 3'-ends of the U2 and U6 snRNAs away from the active site, direct
the RNA sequences, and allow sufficient flexibility between the ends and the
catalytic center. Thus, the spliceosome is in essence a protein-directed
ribozyme, with the protein components essential for the delivery of critical RNA
molecules into close proximity of one another at the right time for the splicing
reaction.

 

进一步证实了拼接体是一个核酶

需要加注的是,已经获得诺贝尔奖的“核糖体”比“拼接体”更复杂,也是一个最大的核酶。但是与核糖体不同,拼接体可能并不存在characteristic conformation,因为拼接体具有高度的动态性....
................

Copyright © 2015, American Association for the Advancement of Science.

PMID: 26292705  [PubMed - as supplied by publisher]

分辨率高达3.2埃的线粒体核糖体亚单位图像,以及下图那张分辨率达到3.3埃的20S蛋白酶体图像和哺乳动物感受器通道TRPV1的图像。 TRPV1的图像尤其值得一提,因为TRPV1蛋白是一种膜蛋白,只有四级对称性(four-fold symmetry),比核糖体要小一个数量级。所以之前大家一直都认为很难用低温冷冻电镜对该蛋白进行结构解析的研究工作。有了 DDD成像技术、更好的计算机辅助和生物化学技术之后,Liao等人终于在某些区域获得了分辨率高达3.4埃的图像,从而有机会开展原子建模工作,在整个结构生物学(structural biology)发展历史上写下了重重的一笔。http://www.ncbi.nlm.nih.gov/pubmed/24305160

 

除非施一公院士的拼接体结构解析单独授予诺贝尔生理学或医学奖



https://blog.sciencenet.cn/blog-218980-915281.html

上一篇:冷冻电镜技术会不会获得诺贝尔化学奖?Sjors Scheres vs 施一公
下一篇:低温电镜诺贝尔奖获得者,“土鳖”程亦凡
收藏 IP: 110.146.136.*| 热度|

3 杨正瓴 蔡小宁 戴德昌

该博文允许实名用户评论 评论 (2 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-24 04:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部