|||
全球气候危机紧迫,引出越来越多问题,但是全球有效可行的解决方案过少。这显然与全球科学主流对全球气候危机复杂问题缺乏全面深入认识相关,但是与世界大国与企业巨头一系列政治经济商业利益影响不无关系。全球发展中国家与发达国家目前在巴黎COP21大会上争论的所有解决方案,无法实现得以遏制足够温室气体排放的目标,因为都是部分“治标”方案,不是精准“标本兼治”的方案。美国《有机消费者协会》文章《有机生态农业与传统放牧养殖业地下储碳:逆转全球温暖》与美国《食品安全中心》(Center for Food Safety)近日在巴黎全球气候变化大会COP21上,提出的全球科学界与政治家们缺乏认识的方案才是全球有效普适解决方案:在全球所有国家强力推动重建土壤碳储存系统的生态农业!【评论:这意味着必须在全球范围摒弃“化学农药、转基因农业、工业化动物集约化密集养殖、工业化森林砍伐建设单品种大规模农场”等破坏生态最大量增加温室气体排放一系列造成更大恶果的做法!】
SOIL & CARBON
土壤与碳储存
SOIL SOLUTIONS TO CLIMATE PROBLEMS
土壤与全球气候危机问题
http://www.centerforfoodsafety.org/files/soil-carbon-pamphlet_54305.pdf
email: info@centerforfoodsafety.org www.centerforfoodsafety.org
图2
While the farmer holds the title to the land, actually it belongs
to all the people because civilization itself rests upon the soil.
农民持有土地拥有权时,土地实际上属于全人类,因为人类文明依赖于土壤。
- Thomas Jefferson
托马斯•杰斐逊(美国第三任总统)
AN OVERVIEW
综述
An excess of carbondioxide (CO2) in the Earth’s atmosphere is warming the planet andincreasing the severity and intensity of extreme weather events. Because the atmosphere can only absorb so much of this greenhouse gas, excess CO2 is dissolving into our oceans,causing them to acidify. Ocean acidification not only harms marine life, it puts food websat risk.1
地球大气过量二氧化碳(CO2)温暖我们星球加剧极端气候事件强度与频度。由于大气只能吸收一定量温室气体,过量CO2正在溶解进入海洋,造成酸化。海洋酸化不仅危害海洋生物,同时陷食物网络于危险。1
While this is a grim state of affairs, there is hope, and it is right under our feet in the soil.
尽管面临如此可怕境况,依然存在希望,这种希望存在于我们脚下的土壤之中。
In fact, soil is the largest “sink”—or area of storage—whereadditional carbon wouldactuallybe extremely beneficial. Currently our cultivated soils globally have lost 50-70percent of their originalcarbon content.2
事实上,土壤是最大的“碳汇”-- 或者碳储存区域 -- 而且,土壤中更多的碳实际上及其有益。目前,我们耕作的土壤,在全球范围,丧失了其原先碳储存的50-70%!2
This means we have a tremendous opportunity to put carbon back into the soil where itcreates positive feedback loops,making healthy soil a systemic solutionto multipleproblems including food and watersecurity. Not onlyis rebuilding soil carbon entirelypossible, unlike drastic climate mitigation measures like geoengineering, it is withoutrisk.
这意味着,我们存在着将碳储存回土壤的巨大可能性,在土壤中,更多的碳创造正向的反馈环,使更健康的土壤成为解决多重问题的系统性解决方案,同时成为食物安全与水安全的解决方案。重建土壤碳储存不仅完全可能,而且不像某些科学家推荐的地球工程这样的极端气候缓解措施存在极大风险那样,重建土壤碳储存完全没有任何风险。
图3、
HOW DID CARBONBECOME A PROBLEM?
碳如何成为一个问题?
The process that actually removes CO2
from atmospheric circulation is photosynthesis.
- Christine Jones, Soil Ecologist
A key element of all livingthings, carbon is constantly cycling throughdifferent spheres as eithera liquid, solid,or gas. Humanactivities—including the burning of fossil fuels, deforestation, the draining ofwetlands, and repeated tillage— have disrupted the carboncycle, taking it out of balance. Carbonper se is not the problem as there is a fixed amountof carbon on the planet. Humans are altering the chemistry of wherecarbon is stored,and climate change is a manifestation of that alteration.
所有生命体中关键性的元素,碳以液态、固态或者气态方式在地球大气、地壳与海洋之间不停循环。人类的活动 -- 燃烧化石燃料、砍伐森林、湿地排水,以及重复耕地 -- 干扰了自然界的碳循环,使其失衡。碳本身不是问题,因为地球上有一个固定的碳量。人类在改变碳储存的化学,气候变化则是其受到的表现形式。
Another way of lookingat the problem is that too much of the carbon thatwas once in a solid phase in the soil is now a gas.3 As a result, there is toomuch carbon in theatmosphere, too much in theocean, but not enough stablecarbon where it once was,in the soil.*
看待这个问题的另外一种角度是,原先以固态存在于土壤的太多碳现在以气态存在。作为结果,大气中有太多的碳,海洋中也有太多的碳,而原先存在于土壤的固态碳不足。*
图4
HOW DOES ATMOSPHERIC CARBON BECOME SOIL CARBON?
大气中的碳如何成为土壤中储存的碳?
The Earth’s soils store 2,500 billion tons of carbon—more carbon than theatmosphere (780 billiontons) and plants (560billion tons) combined.4Additionally, fossil fuels, formed from ancient, fossilized plants and animals,store another 5,000-10,000 billion tons of carbon.5When burned,carbon molecules combine with two oxygen atoms to form CO2, a gas.
地球的土壤储存着25,000亿吨碳 -- 比大气中的碳(7800亿吨)与植物(5600亿吨)中的碳合在一起多得多。4此外,化石燃料,由古代化石化的植物与动物形成,另外储存有50,000 - 100,000亿吨碳。化石燃料燃烧时,每个碳分子与大气中两个氧原则结合形成气体的CO2。
*In fact, from 1750 to 2011, about one-third of total human-caused emissions were released through deforestation and land use change 6 (approximately 43 percent of which came directly from the Earth’s soils).7
*实际,从1750-2011年,人类造成的温室气体排放的大约三分之一,由砍伐森林改造为农田的变化释放。6(其中大约43%直接来自地球土壤)。7
We know more aboutthe movement of
celestial bodies than about the soil underfoot.
我们对星球运动的了解多于对脚下土壤的认识。
- Leonardo da Vinci
达芬奇(意大利科学家)
Plant photosynthesis has the remarkable ability to capture atmosphericCO2, release the oxygen back into the atmosphere, and convert the carbon into sugars. The plant uses some of this to produce above groundgrowth such as leaves. Meanwhile, as much as 40 percent of the capturedCO2 is released through the plant’s roots to feed soil microbes, which in turn assist the plant in acquiring nutrients.8 Microbes rely on this energyto create complex,stable forms of soil carbon, includinghumus.9 If left undisturbed, soil humus can lock carbon into place for “an average life-timeof hundreds to thousandsof years.”10
植物光合作用具有捕捉大气CO2释放氧气回到大气并且将碳转换为糖的出色能力。植物的光合作用部分用于使植物地面上生长叶子。同时,职务捕捉到的CO2多达40%的部分,通过植物根部喂养土壤微生物,它们则协助植物获得营养物。8土壤中的微生物依赖于这样的能量创造复杂的、稳定形式的土壤碳,包括腐殖质。9如果不予以干扰,土壤腐殖质能够将其中的碳在土壤中锁住“平均几百年到数千年。” 10
WHAT IS THE CONNECTION BETWEEN SOIL CARBON AND FRESHWATER STORAGE?
土壤碳与新鲜水储存之间的关联?
Healthy soils have aggregates, structures that create air pockets,allowingwater to infiltrate the soil profile. Healthy soils act as giantmoisture holdingsponges, a functionthat is especially important in times of drought and flooding.When the aggregates are missing,soils lacks porespace and can becomeeasily compacted. Compacted soils lose the abilityto absorb water, resulting in erosion and sometimes flooding.Inorder for rainfall to be effective, it must be absorbed by the ground whereit falls.To do this the soil must have carbon to build aggregates.
健康土壤有聚合物,其结构创建气泡,允许水渗透到土壤整个剖面。健康土壤发挥巨大水分保留“海绵”的作用,这样的功能在旱涝期间尤其重要。这样的聚合物一旦丧失,土壤缺乏孔隙空间,很容易压实。压实的土壤丧失吸收水分的能力,造成侵蚀以及造成有时洪水。为了让降雨有效,土壤必须能够吸收下降的雨水。为此,土壤必须储存构建聚合物的足够的碳。
图5
HOW DO SOILSLOSE CARBON?
土壤如何丧失其碳?
The soil is the great connector of our lives,
the source and destination of all.
土壤是我们生命的最大连结者,是所有生命的来源与归宿。
- Wendell Berry
温德尔.贝瑞(美国知名诗人、农民、小说家、生态农业捍卫者)
Fertile soilcan be degraded and lose carbonin a variety of ways. Pavingoverland kills soil microorganisms, renderingsoil lifeless and interfering withnatural carbon exchanges. Soilsalso lose carbonwhen native grasslands areconverted to cropland. In the United States, for instance,between 2008 and 2012, 1.6 million acres of long-term grasslandswere converted tocropland,releasing an equivalent amount of carbonto that of 28 millioncarson the road or 34 coal-fired power plants.11
肥沃的土壤以多种方式退化和丧失碳。在土地上铺设道路、建造无裸露土壤广场、设施等,杀死土壤微生物,使土壤丧失生命并干扰碳的自然交换。原生态草原改造为种植农作物的农田时,土壤也失掉碳。在美国,2008年到2012年之间,160万英亩长期草原被改造为种植农作物农田,释放的碳相当于道路上行驶2800万辆汽车或者34座烧煤火力发电站。11
As theUnited Nations Convention to Combat Desertificationexplains,“carbon is then trapped in the air as carbon dioxide,with nowhereto go, because degradedland loses its ability to capturecarbon back intothe soil. In this way, land degradation fuels climate change.”12
如联合国《防治荒漠化公约》解释的那样,“碳然后被捕捉在大气中作为二氧化碳,无处可去,因为退化的土地丧失了其捕捉碳储存回土壤中的能力,土地退化驱动气候变化。” 12
Soils also lose carbonin less obvious ways including: the long-termuse ofextractive farming practices such as tillage, leaving soils uncovered and exposed to the elements, and failing to feed microorganisms with organicmatter. According to Ray Archuleta,an agronomist with the NaturalResources Conservation Service (NRCS), “our soils are naked, hungry,thirsty and running a fever.”
土壤还以其他不那么明显的方式失掉碳:长期使用耕作这样的采掘式农业作业方式,使土壤裸露暴露与元素,不能用有机质喂养土壤中的微生物体。依据RayArchuleta,为美国自然资源保护服务机构工作的农学家,“我们的土壤是裸露的、饥饿的、干渴的,而且在发烧。
图6、
HOW CAN WE REBUILDSOIL CARBON?
我们如何重建土壤碳储存?
Because fertile soilis alive and teemingwith living organisms, it needs to befed organic matter. In fact, the abundanceof soil microbes and otherorganismsis generallyproportional to the soil’sorganic matter content.13 It is important to feed soil and protect it from temperature extremes,as wellas from wind and water erosion, by keeping it covered. This can be done onagricultural lands by keeping the ground protected with a mix of covercrops (livingplant roots feed soil life below), by leavingcrop residues, and byusingproper pasturemanagement.
由于肥沃的土壤是有生命的,有着丰富的生物,需要有机质喂养。事实上,大量的土壤微生物与其他生物体的数量通常与土壤的有机质含量成比例关系。13通过保持土壤覆盖物,给土壤喂养有机质、免遭高温烘烤、免遭风雨水侵蚀,极为重要。通过农田上保留作物残渣,以及采用适当的适当的牧场管理,使农田保持土壤受到混合不同作物的覆盖(生长中的植物根部喂养下边土壤生命),可以实现这样的目标。
We canrebuild soil by adopting regenerative, organic agriculture including:polyculture, cover cropping, agroforestry, nutrient recycling, crop rotation,and organic soil amendments like compost and biochar.
我们可以通过采用可再生的、有机农业,包括:多品种种植、覆盖种植、农林、养分循环、作物轮作、有机土壤改良剂如堆肥和生物炭,来重建土壤碳储存与有机质。
图7、
The real Arsenal of Democracy is a fertilesoil,
the fresh produce of which is the birthright of nations.
真正民主武器是肥沃的土壤,它是任何国家与生俱来的权利。
– Sir Albert Howard
霍华德·艾伯特爵士(英国植物学就、有机农业先驱者、
早期有机农业运动推动者)
WHY IS REBUILDING SOIL CARBON ESSENTIAL?
重建土壤碳储存为什么至关重要?
Rebuilding soil organic matter on a global scale is essential for food,water, and climate security. The multiple benefits of healthy soil are incalculable for: improved crop yields; a greater availability and varietyofnutrients in food; increased retention and supply of fresh water; and, asmore carbon is stored in soil,reduced greenhousegases in theatmosphere.Soil erosion is an issue of globalconcern and widespreaddisregard for soil as the basis of our food system has led todesertification, hunger, and climate instability. Conversely, rebuilding soil health by increasing its carbon content will make communities moreresilient in theface of escalating climate-related challenges.
全球范围重建土壤有机质对食物安全、水安全与气候安全皆至关重要。健康土壤多重益处具有无法计算的价值:更高产量;食物中更可以获得的更多种营养物;土壤中保留更多水份并提供更多清洁水的供应;随着更多碳储存回土壤中,将减少大气中的温室气体。土壤侵蚀是引起全球担心的问题,长期广泛无视土壤是我们食物系统的基础,导致沙漠化、饥饿与气候不稳定性。与此相反,通过增加土壤碳储存重建土壤健康,使人类社区具有应对继续加剧气候相关挑战更强的适应性。
WHAT IS THE OPPORTUNITY?
什么是机会?
Scientists are just learning aboutsoil’s sequestration’s capacity, and as a result estimates vary on exactly how much carbon we can store. RattanLal, director of Ohio State University’s CarbonManagement andSequestration Center and president elect of InternationalUnion of Soil Sciences, estimates that with proper management, 75-100parts per millionof CO2 couldbe stored in soiland forestrysystems.14 Othersbelievethe potential may be higher. Regardlessof the actual amount, twothings are certain:we have a global soil carbon deficitthat can beaddressed immediately by transferringatmospheric CO2 into soil humusthrough plant biomass,and we know restoring soil health is the only waywe canprovide enough foodand water to everyone on the planet.
科学家们刚刚开始学习了解土壤储存碳的能力,不同的科学家对于精确估计土壤能够储存多少碳得出差别的结果。拉谭·拉勒,美国俄亥俄州立大学碳管理和封存中心主任,国际土壤科学联盟当选主席,估计:如果适当管理的话,可以将75-100ppm的二氧化碳储存到土壤与森林系统中。其他学者认为土壤潜在储碳能力更高。无论土壤实际储碳能力的实际数量如何,有两点确切:我们面临全球土壤碳赤字,我们可以转移大气二氧化碳通过植物生物量形成土壤腐殖质来应对,而且我们知道,重建土壤健康是我们对地球上所有人类提供足够食物与水的唯一方法。
WHAT ARE THE RISKS?
有哪些风险?
Unlike geoengineering, rebuildingsoil carbon is a zero-risk,low-costproposition. It has universal application, and we already know how to doit. All that stands in our way is a greater awareness of the opportunity and the politicalwill to make it happen.
与某些科学家鼓吹的“地球工程”不同,重建土壤碳储存是一种零风险、低成本方案。重建土壤碳储存具有全球普适应用,而且我们已经知道如何这样做。唯一阻碍我们实现的障碍,是缺乏对这种机会的更好认识以及实现这种机会的政治意愿。
Soil truly is the skin of the earth—the frontier between geology and biology.
土壤真实是地球的皮肤 -- 是地质学与生物学之间的前沿。
– ProfessorDavid R.Montgomery
大卫·R·蒙哥马利教授
(美国华盛顿大学地球与宇宙科学教授,地貌学科学家)
REFERENCES
参考文献:
1 Harrould-Kolieb, Ellycia, Matthew Huelsenbeck, and Virginia Selz. Ocean Acidification: The Untold Stories. Rep. Oceana, 2010. 3.
2 Lal, Rattan. Crop Residues and Soil Carbon. Rep. Food and Agriculture Organization of the United Nations.
3 Jones, Christine. “SOS: Save Our Soils.” Interview by Tracy Frisch. Acres USA Mar. 2015. Web. 9 Apr. 2015.
4 Lal, Rattan. “Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security.” BioScience 60.9 (2010): 708-21. Oxford Journals. Web. 9 Apr. 2015. 708.
5 Ibid.
6 IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 12.
7 Lal, Rattan. “Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissionsand Advancing Global Food Security.” BioScience 60.9 (2010): 708-21. Oxford Journals. Web. 9 Apr. 2015. 709.
8 Dilkes, Nigel B., David L. Jones, and John Farrar. “Temporal Dynamics of Carbon Partitioning and Rhizodeposition in Wheat.” Plant Physiology 134.2 (2004): 706–715. PMC. Web. 9 Apr. 2015.
9 Jones, Christine. “SOS: Save Our Soils.” Interview by Tracy Frisch. Acres USA Mar. 2015: n. pag. Web. 9 Apr. 2015.
10 Azeez, Gundula. Soil Carbon and Organic Farming. Rep. Soil Association, 2009. 6.
11 Tyler J Lark et al. “Cropland expansion outpaces agricultural and biofuel policies in the United States.” 2015 Environ. Res. Lett. 10 044003.
12 Land-based Adaptation and Resilience: Powered by Nature. Rep. Bonn: UNCCD. 4.
13 Grubinger, Vern. “Soil Microbiology: A Primer.” University of Vermont Extension. University of Vermont, Nov. 2004. Web. 9 Apr. 2015.
14 Lal, R. (Producer). Carbon Sequestration and Climate Change. [Slideshow]. (2012, 5/1/15). Retrieved from http:/ presenter.cfaes.ohio-state.edu/link/Ratan_Lal_5-7-12_-_ Flash_(Large)_-_20120507_03.37.06PM.html
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 15:07
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社