gaohong5250的个人博客分享 http://blog.sciencenet.cn/u/gaohong5250

博文

《随机过程》教科书推理逻辑错误:前提与结论概念不一致

已有 12279 次阅读 2024-6-6 21:08 |个人分类:随机过程|系统分类:科研笔记

数学推理是由一个或几个已知判断(前提)推出一个新判断(结论)的思维形式,它可以使我们根据已知推出未知。推理是数学研究获取新知识、发现新规律和建立新理论的重要方法例如,整个欧几里得几何就是由一系列推理组成的推理系统

任何推理都包含前提、结论和推理形式。前提是已知的判断,是推理的出发点和根据。结论是由前提推出新判断,是推理过程的结果。前提和结论之间必须有一定的逻辑关系,也就是推理形式

同一律是数学推理过程中必须要遵循的逻辑基本规则。在同一推理过程中,使用的概念要必须一致,始终保持同一,不能用不同的概念表示同一对象,这样才能保证结论的确定性和无矛盾性。

如果在推理过程中,不加说明地用一个完全不同的概念代替原有概念进行推理,就会违反同一律,犯“偷换概念”逻辑错误,导致结论不仅在逻辑上不能自洽,而且与客观事实不符。

以《随机过程》教科书“布朗运动位移服从正态分布”的基本假设为例,分析说明《随机过程》教科书在推理过程中的违反同一律“偷换概念”逻辑错误。

《随机过程》首先假设布朗粒子在t时刻的位移X(t)t的连续函数,然后根据中心极限定理推出了X(t)N0σ2t)的结论。

显然,上述推理前提中的X(t)时间函数,结论中的X(t)随机变量

时间函数X(t)和随机变量X(t)的数学符号虽然完全相同但它们是两个分别定义在时域T和样本空间Ω上的不同函数,是两个内涵与外延完全不同的数学概念。

因此,随机过程在同一推理中使两个完全不同的数学概念描述同一对象,导致上述推理前提和结论中的概念不一致,产生了“偷换概念”逻辑错误(图1)

逻辑错误.png

图1 《随机过程》违反同一律逻辑错误

牛顿创立《微积分》时曾违反同一律,将∆x≠0∆x=0这两个不同的概念相互代替,产生了著名的“贝克莱悖论”,引发了一场数学史上持续150年的第二次数学危机,《微积分》理论险被推翻。

英国大主教贝克莱(Berkeley)严厉批评牛顿是有意识地“偷换概念”,《微积分》理论是“分明的诡辩”,并指出“逻辑错误不会产生科学”。

整个18世纪,数学家们的首要任务就是消除《微积分》中的“偷换概念”逻辑错误,几乎每一位数学家都为此做出了巨大的努力。

后来柯西(Cauchy将极限概念作为《微积分》的理论基础,才彻底消除了《微积分》“偷换概念”逻辑错误和“贝克莱悖论”,解除了数学史上的第二次危机。

《随机过程》教科书中的“布朗运动位移服从正态分布”基本假设(公理)是通过“偷换概念”的方式推出的,必然会导致《随机过程》布朗运动理论与客观事实不符,并且在逻辑上不能自洽,无法正确描述布朗运动现象及规律,为自然科学、工程技术和社会科学提供了错误的方法、理论及工具。

      

    

参考

[1] Gregory F.Lawler.随机过程导论[M]. 张景肖译. 北京:机械工业出版社,2010.

[2何书元. 随机过程[M]. 北京大学出版社,2008.

[3钱敏平,龚光鲁,陈大岳,章复熹. 应用随机过程[M]. 北京:高等教育出版社,2011.

         

    



https://blog.sciencenet.cn/blog-3418723-1437174.html

上一篇:非线性直线方程典型应用:陀螺随机游走
下一篇:一图看懂《随机过程》逻辑悖论
收藏 IP: 59.66.100.*| 热度|

23 池德龙 崔锦华 王涛 王从彦 刘进平 郑永军 宁利中 孙颉 杨卫东 朱晓刚 杨正瓴 钱大鹏 曾纪晴 周少祥 孙南屏 钟炳 尤明庆 刘炜 陆仲绩 刘跃 李毅伟 杜占池 叶晓明

该博文允许注册用户评论 请点击登录 评论 (6 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-17 06:31

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部