湖南土著分享 http://blog.sciencenet.cn/u/qhliu 理论物理博士,湖南大学教授。

博文

微分几何中最不显然的一个“显然” 精选

已有 9644 次阅读 2021-6-6 09:10 |个人分类:大学教育|系统分类:教学心得

1996年-1999年间,我在科学院理论物理研究所念(在职)博士。博士论文课题需要一点曲面曲线论,于是自学北京大学数学系陈维桓先生的《微分几何初步》,这是一本简练的好教材。后来易名为《微分几何》,2006年和2017年分别出版了第一、二版,现为“国家级规划教材”,实至名归。《微分几何》和《微分几何初步》的内容相差无几。

封面3.jpg

(陈维桓先生的微分几何教材。《微分几何初步》出版于1990年)

曲面曲线论是古典的学问,很多人可能以为无所营养。但是,这本书对我的职业生涯产生了决定性的影响,不仅其中最关键的知识,曲面的曲率,被我用到了量子力学动量中而发现了几何动量,连一些隐秘角落的边角余料(例如切触平点Dupin标形等等),也在我后来的研究和教学中,发挥了重要的作用。人的一生,不一定会碰到贵人;但只要深读,“贵书”就在身边。微分几何就是我的“贵书”。我经常把《微分几何》和王国维的《人间词话》相提并论,认为微分几何是数学中的人间词话。(贵人何在? 烟涛微茫总难求;“贵书”常有,熟视无睹偏不读。唉。)

《微分几何初步》中有两个地方,不大容易理解。一处涉及微分的概念。印象中,陈省身先生在香港的一次讲座中提到过,相比于导数,微分很难理解。

第一处是一个“显然”,参见下图标记处这里的“显然”,显然是“一个微分=一个数”。这怎么可以?完全不能理解。数学分析中,微分是一个无穷小,小于任何给定的数,如何能等于一个有限的数?  百思不得其解,跑到北大找陈维桓先生请教。他说得头头是道,不过内容基本就是把书上的内容复述了一遍。尽管不懂如故,我还是很珍视陈先生的指教,把他的讲解内容要点,写进了一张小纸条,插进了书页中。他的讲解,对我最终理解成功,也没有任何帮助。后来有数学家告诉我,这部分知识,属于泛函分析,不过直接搬运到了这里。

捕获1.JPG

这里的显然,显然指“一个微分=一个数”

捕获2.JPG

 (陈维桓先生答疑的记录。记录在当时中国科学院理论物理研究所用的材料纸上,纸很薄半透明

终于有一天,我理解了这个问题,得益于我对量子力学比较熟悉。这里的微分,前后的含义不同!前面的使用相当于经典力学量,而“显然”之后,变成了算符,而且还是量子力学中的投影算符。当我意识到这一点的时候,把自己吓了一跳:这个“显然”之间,隔了好几个爱因斯坦!经典力学和量子测量理论,显然属于两个不同的范式。连爱因斯坦都没有能进入量子范式。

再后来,我明白了,这里的微分,数学上定义称为切空间对偶空间中的基矢量。

第二处也是一个“显然”,参见下图标。这一内容和具体教科书无关,而是微分几何中的一个知识点。曲面上的任何一点,主曲率可大可小,有最大值也有最小值,这不奇怪。我的问题是,为什么给出最大和最小主曲率的截线的切方向(即两个主方向)是相互正交的? 如果一个曲面复杂,难道也是正交的?这部分的运算简单,推导很好懂。但是结果违背直觉,难以建立图像。过了很多年,我才明白,这个性质,是和一个曲面上的一点可以定义法方向直接联系。任何复杂的曲面,从够小的区域看,可以定义法方向,也就是规则曲面片,两根两个主方向因而具有正交性。这一点,可以通过刚体主轴的可定义性,进行类比。

principal directions.JPG

(曲面上任何一点都可画出这样的正交曲线,这两根曲线的曲率一个最大,一个最小)

捕获3.JPG

当年读书时画的辅助图,绞尽脑汁可见一斑



https://blog.sciencenet.cn/blog-3377-1289944.html

上一篇:中国第一位物理博士李复几曾是湖南大学前身学生
下一篇:几何动量十周年
收藏 IP: 8.211.165.*| 热度|

23 尤明庆 李宏翰 郑永军 郭战胜 胡大伟 赵国求 王涛 王安良 李学宽 周忠浩 陈南晖 杨正瓴 钟定胜 黄永义 宁利中 黄健 李毅伟 田灿荣 雷蕴奇 籍利平 王林平 吴国林 魏焱明

该博文允许注册用户评论 请点击登录 评论 (16 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-24 01:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部