||
Approximate computation of the infinite-time controllable abundance for linear continuous-time systems
In my blog article “Approximate computation of the controllable abundance for the linear continuous-time systems”(http://blog.sciencenet.cn/blog-3343777-1068213.html), by discreting the continuous-time models, the approximate computing methods of the finite-time controllable abundance for the linear continuous-time systems are proposed.
When the matrix $A$ and eigenvalues $\eta_{i}(i=1,2,\cdots,n)$ of the SISO linear continuous-time systems $\Sigma(A,B)$ satisfy that
1) the matrix $A$ is a diagonal matrix, i.e., $A=\mathrm{diag-matrix}\{\eta_{1},\eta_{2},\cdots,\eta_{n}\}$ ,
2) all eigenvalues are differential,
3) all eigenvalues are real and positive, i.e., the eigenvalues $\eta_{i}>0(i=1,2,\cdots,n)$
the systems matrix and input matrix of the corresponding discrete systems $\Sigma(G,H)$ are respectively
$G=\mathrm{diag-matrix}\{e^{-\eta_{1}\Delta},e^{-\eta_{2}\Delta},\cdots,e^{-\eta_{n}\Delta}\}$
$H=\left[\frac{b_{1}}{\eta_{1}}\left(1-e^{-\eta_{1}\Delta}\right),\frac{b_{2}}{\eta_{2}}\left(1-e^{-\eta_{2}\Delta}\right),\cdots,\frac{b_{n}}{\eta_{n}}\left(1-e^{-\eta_{n}\Delta}\right)\right]$
where $\Delta$ is the sampling step, $[b_{1},b_{2},\cdots,b_{n}]=B^{T}$ . And then, the infinite-time controllable abundance of the continuous-time systems $\Sigma(A,B)$ can be computed approximately as follows
$\lim_{N\rightarrow\infty}\mathrm{Vol}\left(R_{dx}\right)=
=\left|\left(\prod_{1\leq j_{1}
When the systems $A$ is not a diagonal matrix and but its eigenvalues are differential, real, ans positive, the infinite-time controllable abundance can be computed approximately as follows
$\lim_{N\rightarrow\infty}\mathrm{Vol}\left(R_{dx}\right)=\left|P\right|\left|\left(\prod_{1\leq j_{1}
where the transformation matrix $P$ is composed of the all right eigenvectors of the system matrix $A$ , the row vector $q_{i}$ is the left eigenvector corresponding the eigenvalue $\lambda_{i}$ of the matrix $A$ .
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 18:57
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社