||
······
最近想到几个问题:如何更快地学习高端数学?
如何更有效地积累?
······
注:调整了边框的宽度.
* * *
学习笔记(接前)。引言部分,1.8(b)。
Here m⊂Kᵒ is the subset of topologically nilpotent elements.
---- m 是拓扑幂零元(构成的)子集.
.
Part (iv) implies that Hi(X, Ox) = 0 for i > 0, which gives Tate's acyclicity theorem in the context of perfectoid spaces.
注:Part (iv) 说上同调群Hi(X, O⁺x) 是 m-张量(i>0).
---- 这蕴含 Hi(X, Ox) = 0 for i > 0.
---- 即在完空间语境中给出了Tate的无回路定理.
.
However, it says that this statement about the generic fibre extends almost to the integral level, in the language of Faltings's so-called almost mathematics.
---- 但是,在Faltings的所谓几乎数学的语言里,该有关一般纤维的陈述几乎扩展到整数层面.
.
In fact, this is a general property of perfectoid objects: Many statements that are true on the generic fibre are automatically almost true on the integral level.
---- 事实上,这是完形对象的一般性质:许多在一般纤维上真的陈述都自动地在整数层面几乎真。
.
评论:对照了某类命题在完空间语境与Faltings语境的微妙不同,似体现出“perfectoid”的内涵和优势。
.
Using the theorem, one can define general perfectoid spaces by gluing affinoid perfectoid spaces X = Spa(R, R⁺).
---- 使用该定理,可以用胶粘仿完空间X=Spa(R, R⁺)的办法来定义一般的完形空间。
.
We arrive at the following theorem.
(待续)
.
小结:定理1.8给出了完仿空间的基本性质。
符号大全、上下标.|| 常用:↑↓→←↦∞π ΓΔΛΘΩμφΣ∈∉∪∩⊆⊇⊂⊃≤≥⌊ ⌋ ⌈ ⌉≠ᵒ⁺⁻⁰¹²³ᵈ ₀₁₂₃ᵢ
*
温习:1.8(a)
..(R, R⁺) ~ X
......|..........|
(Rᵇ, Rᵇ⁺) ~ Xᵇ
1. X ≌ Xᵇ .(X 是完仿联系的Huber空间).
2. 有理子集~>完仿~>倾斜.
3. Ox 和 O⁺x 是沓.
4. 上同调群Hi(X, O⁺x) 是 m-张量(i>0).
浓缩:
---- K°/p ≌ Kᵇ°/p.(para.3a)
---- Kᵇ = lim<K, x ↦x^p.(para.3b)
---- (x)d --> (x#)d
.........↑..分裂域..↓
[Kᵇ] ~> [K]c
注: x:=ak^δn.(para.3c)
---- ndv(1)~K~(Φ)=Kᵒ/p.(Def.1.2)
---- Kᵇ(p)~Fontaine~K.
---- {K} ≌ {Kᵇ}. (Th1.3)
---- A¹Kᵇ ≌ lim<A¹K (T↦Tᵖ). (Claim1.4)
---- X(K)~Xᵃᵈ(K)~|Xᵃᵈ|.
---- |(A¹Kᵇ )ᵃᵈ| ≌ lim<|(A¹K)ᵃᵈ| (T↦Tᵖ). (Th1.5)
---- 完域 K-代数 R(K) 是指:Banach K-代数,Rᵒ 有界,(Φ) = Rᵒ/p. (Def.1.6)
---- C ≌ Cᵇ (Def.1.7a)
---- X = Spa(R, R⁺)(Def.1.7b)
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 00:29
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社