.
“要追逐一个问题,而不是一个领域。”
(接上回%)Lemma 2.17. Under the above notation, assume we have a finite sequence of smooth blowups of length p, toroidal with respect to (X, Λ), and let φ: Xp --> X0 = X be the induced morphism. Suppose Ci ⊂ Ei for each 0 < i < p. Then μEpφ*Λ ≥ p+1. 评论:之前作者介绍了概念(“蓄势”),跟着就出现在这个引理中(“发力”)。包含3个条件、1个结果。
---- 主配置:环形爆破序列 关乎 “格雅”配对;
---- 副配置:诱导的态射(“抓两头”);
---- 附加:一致包含关系;
结果:某种不等式。
加评:附加条件怎么想到的?得到不等式出乎意料,怎么会想着去找这么个不等式?
---- 从外观看,一致包含关系 似对应 不等式。
---- 从功能看,需要放到“调用”此引理的上下文里分析(即命题5.5的证明,参调用关系*)。 Proof. If 0 ≤ i < p, then Ci is contained in at least two components of Λi because Ci is an lc centre of (Xi, Λi) of codimension ≥ 2. When i > 0, one of these components is Ei, by assumption. Let φi denote Xi --> X0. Then, by induction, μEi+1φ*i+1Λ ≥ μ Ei φ*iΛ +1 ≥i + 2.
评论:这个证明很短,但一下子也看不明白。(应该不难,先放一边)。
(3) Consider a sequence of blowups as above in (1) (so this is not necessarily toroidal). Let T be a prime divisor over X, that is, on birational models of X. Assume that for each i, Ci is the centre of T on Xi. We then call the sequence a sequence of centre blowupsassociated to T. By [24, Lemma 2.45], such a sequence cannot be infinite, that is, after finitely many centre blowups, T is obtained, i.e. there is p such that T is the exceptional divisor of Xp -> Xp-1 (here we think of T birationally; if T is fixed on some model, then we should say the exceptional divisor is the birational transform of T). In this case, we say T is obtained by the sequence of centre blowups Xp -> Xp-1 ->...-> X0 = X.
评论:给出“中心爆破序列”的概念及简单性质。
---- 主配置:一般爆破序列一套。
---- 副配置:主集合X上引入一个不可约除子T。
---- 附加:Ci 是T的中心(Xi上)。
加评:大致上,是把一串序列 {Xi} 与某个对象 T 关联了起来。
---- 性质:中心爆破序列一定是有限的,即存在 p 使得 T 是 Xp ->Xp-1的“例外除子”。
---- 提法:称 T 是由中心爆破序列获得的。
(推测:将来可能需要构造这种序列,从而得到T。换句话说,这是一种方法,会再次出现)。
.
小结:2.16后半部分读写完毕。