(接上回*)2.22. Toric varieties and toric MMP. We will reduce Theorem 1.6 to the case when X = lP^d. To deal with this case we need some elementary toric geometry. All we need can be found in [9]. Let X be a (normal) Q-factorial projective toric variety. Then X is a Mori dream space, meaning we can run an MMP on any Q-divisor D which terminates with a minimal model or a Mori fibre space of D. Moreover, the MMP is toric, that is, all the contractions and varieties in the process are toric. If we have a projective toric morphism X --> Z to a toric variety, then we can run an MMP on D over Z which terminates with a minimal model or a Mori fibre space of D over Z. See [9, Ch.15.5] for proofs.
第五句,那么 X 是一个Mori梦空间,即可以运行MMP于任何Q-除子D上,并终止于极小模型或D的Mori纤维空间。
第六句,进一步,MMP是环形的,就是说,此过程中的所有收缩与簇都是环形的。
第七句,如果我们有射影环形态射 X --> Z 映到环形簇,那么可以运行MMP于D(over Z),并终止于极小模型或D(over Z)的Mori纤维空间。
第八句,证明见[9, Ch.15.5]。
简记:
1) QPT~X~ Mori ~> MMP ~ D (Q-divisor) ==> MM or MFS(D).
|
toric
2) X --> Z ~> MMP ~ D(Z) ==> MM or MFS(D(Z)).
.
Now let Λ be the sum of some of the torus-invariant divisors on a projective toric variety X, and assume (X, Λ) is log smooth. Let Y --> X be a sequence of blowups toroidal with respect to (X, Λ). Then Y is also a toric variety as each blowup in the process is a blowup along an orbit closure.
第一句,现在令Λ为射影环形簇X上的若干 环形-不变除子之和,并假定(X, Λ)是对数光滑的。
第二句,令 Y --> X 为关于(X, Λ)的环形爆破序列(toroidal是形容词,应该在blowups前面)。