zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

两输入两阶系统的复根时的能达丰富性

已有 1294 次阅读 2017-10-22 17:48 |个人分类:reachable abundance|系统分类:科研笔记

两输入两阶系统的复根时的能达丰富性


         若两输入两阶系统的特征根为复根,即线性离散系统 $\varSigma(A,B)$ 的各矩阵可表示为(或可变换为)

            $A_{N}=[B,AB,...,A^{N-1}B]$

            $A=\left[\begin{array}{cc} \sigma & -\mu\\ \mu & \sigma \end{array}\right]=\lambda\left[\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right]$

            $B=\left[\begin{array}{cc} b_{11} & b_{12}\\ b_{21} & b_{22} \end{array}\right]=\left[\begin{array}{cc} \rho_{1}\left[\begin{array}{c} \cos\delta_{1}\\ \sin\delta_{1} \end{array}\right] & \rho_{2}\left[\begin{array}{c} \cos\delta_{2}\\ \sin\delta_{2} \end{array}\right]\end{array}\right]$

其中

          $\rho_{i}=\textrm{sgn}(b_{1i})\left(b_{1i}^{2}+b_{2i}^{2}\right)^{1/2},\quad\delta_{i}=\arctan\frac{b_{2i}}{b_{1i}}\in\left[\frac{-\pi}{2},\frac{\pi}{2}\right)$

          $\lambda=\textrm{sgn}(\sigma)\left(\sigma^{2}+\mu^{2}\right)^{1/2},\quad\theta=\arctan\frac{\mu}{\sigma}\in\left[\frac{-\pi}{2},\frac{\pi}{2}\right)$

故,

$A_{N}=\left[\rho_{1}\left[\begin{array}{c} \cos\delta_{1}\\ \sin\delta_{1} \end{array}\right],\rho_{2}\left[\begin{array}{c} \cos\delta_{2}\\ \sin\delta_{2} \end{array}\right],\lambda\rho_{1}\left[\begin{array}{c} \cos(\theta+\delta_{1})\\ \sin(\theta+\delta_{1}) \end{array}\right],\lambda\rho_{2}\left[\begin{array}{c} \cos(\theta+\delta_{2})\\ \sin(\theta+\delta_{2}) \end{array}\right],...,\lambda^{N-1}\rho_{1}\left[\begin{array}{c} \cos[(N-1)\theta+\delta_{1}]\\ \sin[(N-1)\theta+\delta_{1}] \end{array}\right]\lambda^{N-1}\rho_{2}\left[\begin{array}{c} \cos[(N-1)\theta+\delta_{2}]\\ \sin[(N-1)\theta+\delta_{2}] \end{array}\right]\right]$

因此,有 $N$ 步能达丰富性为

$V_{2}(C_{2}(A_{N})) =V_{2}(C_{2}(A_{N}^{(1)}))+V_{2}(C_{2}(A_{N}^{(2)}))+\sum_{i=0}^{N-1}\sum_{j=0}^{N-1}\lambda^{i+j}\rho_{1}\rho_{2}\left|\sin[(j-i)\theta+\delta_{2}-\delta_{1}]\right|$

相应的无限时间能达丰富性为

$V_{2}(C_{2}(A_{\infty}))= \frac{\rho_{1}^{2}+\rho_{2}^{2}}{\left(1-\lambda^{2}\right)\left(1-\lambda^{K}\right)}\delta_{1,K}^{\lambda}(\theta,0)+\frac{\rho_{1}\rho_{2}}{\left(1-\lambda^{2}\right)}\left|\sin[\delta_{2}-\delta_{1}]\right|+\frac{\rho_{1}\rho_{2}}{\left(1-\lambda^{2}\right)\left(1-\lambda^{K}\right)}\left[\delta_{1,K}^{\lambda}(\theta,\delta_{2}-\delta_{1})+\delta_{1,K}^{\lambda}(\theta,\delta_{1}-\delta_{2})\right]$

其中 $K$ 为满足 $K\theta$ 为 $\pi$ 的最小整倍数的 $K$ ,

$\delta_{1,K}^{\lambda}(\theta,\delta)=\sum_{k=1}^{K}\left|\lambda^{k}\sin[k\theta+\delta]\right|$




https://blog.sciencenet.cn/blog-3343777-1081991.html

上一篇:两输入两阶系统的重根时的能达丰富性
下一篇:两输入两阶连续系统的能达丰富性
收藏 IP: 27.18.225.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-16 16:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部