博雅达观分享 http://blog.sciencenet.cn/u/hillside 思接地质年代,眼扫地球内外 …… 跋涉于水文水资源、地理科学、土地利用与规划、科学思辨、中外哲学

博文

举一反三:加拿大科学家称地幔藏水可填海,美国科学家说可填三次

已有 9322 次阅读 2014-6-29 21:26 |个人分类:水文科学|系统分类:海外观察| 海洋, 科学家, 地幔, 林伍德石, 水量

                            ——加拿大科学家在Nature上首发之后,美国科学家在Science上所见略同

                             ——举一反三:加拿大科学家称相当于全部海洋,美国科学家则称达三倍

                             ——加美科学家发现的矿物是否澳州林伍德心目中超高温、超高压奇石?

http://news.ifeng.com/a/20140616/40749800_0.shtml  

                                     美科学家发现地下660公里水源 水量为全球海洋3倍  

                                                        2014年06月16日 09:25,来源:凤凰卫视  

   美国科学家在北美地壳约660公里下发现隐藏水源,为迄今发现的最大地下水源,含水量足以填满海洋3次。专家指出,今次发现或改写地球海洋的构成理论。

   美国西北大学的地球物理学家雅各布·森(Steve Jacobsen)及新墨西哥大学的地震学家施曼特(Brandon Schmandt)合作研究地球的水来自何方。研究人员利用全美约2000个地震仪分析逾500次地震的地震波。地震波能穿透地球内部,借由观察穿透速度的变化,可分析地壳及地幔的结构。

                                                                      含水量填满海洋3次

   研究人员发现,美国地表660公里下方的地幔过渡带有岩浆存在,估计是由于尖晶橄榄石(Ringwoodite)等存在于地壳深处的岩石内含有水分子。当板块运动时,这些岩石因高温高压而释出水分,并融化形成岩浆,向上冒升。研究人员以尖晶橄榄石模拟在高温高压下的状态,证实其对地震波的影响与现有地震数据吻合。

   雅各布森指出,此前科学界普遍认为地球上的水是由撞击地球的冰彗星或其他外物带来,但最新研究说明,地球上的水或本身存在于地球内部,因地壳活动而冒出地表,形成海洋。假设地幔过渡带中岩石重量的1%为水分,其含水量便相当于全球海水容量的3倍。不过由于这些水分位置极深且非以液态存在,相信难以抽取应用。他希望未来可透过收集其他地区的地震数据,进一步了解地下构造。研究报告刊于《科学》期刊。

                                                              “隐藏的海洋”位于地幔过渡带

   美国科学家12日说,地球内部可能存在着一个水量相当于地表海洋总水量3倍的“隐藏的海洋”。这一发现也许有助于解释地球上海洋的水从何而来。

   美国新墨西哥大学和西北大学的研究人员在《科学》杂志上报告说,这一“隐藏的海洋”位于地球内部410公里至660公里深处的上下地幔过渡带,其水分并不是我们熟悉的液态、气态或固态,而是以水分子的形式存在于一种名为林伍德石的蓝色岩石中。

   研究人员利用遍布全美的2000多个地震仪分析了500多次地震的地震波。这些地震波会穿透包括地核在内的地球内部,由于水会降低地震波传播的速度,研究人员可以据此分析地震波穿透的是什么类型的岩石。结果表明,就在美国地下660公里深处,岩石发生部分熔融,且从地震波传播速度减缓来看,这是可能有水存在的信号。与此同时,研究人员在实验室中合成上下地幔过渡带中存在的林伍德石,当模拟地下660公里深处的高温高压环境时,林伍德石发生部分熔融,就像出汗一样释放出水分子。

   “我想我们最终找到了整个地球水循环的证据,这或许有助于解释地球地表大量液态水的存在,”西北大学地球物理学家史蒂文·雅各布森说,“几十年来,科学家一直在寻找这一缺失的深层水。”

   地球上水的来源有多种说法,一些人认为是彗星或陨石撞击地球带来的,也有人认为是从早期地球的内部慢慢渗透出来的。新发现为后一种说法提供了新的证据。

   今年3月,加拿大艾伯塔大学研究人员在英国《自然》杂志上报告说,他们首次发现了来自上下地幔过渡带的一块林伍德石,其含水量为1.5%,从而证明有关过渡区含有大量水的理论是正确的。


http://kepu.sciencenet.cn/index.php?s=/Index/datail/id/275

地球深部藏有“隐形海洋”?
来源:中国科学报      作者:赵广立      2014年06月27日      

近日,美国新墨西哥大学和西北大学的研究人员在《科学》杂志上报告称,地球内部可能存在着一个3倍于地表海洋总水量的“隐形海洋”。这一“隐形海洋”位于地球内部410~660公里深处的上下地幔过渡带,其水分并不是我们熟悉的液态、气态或固态,而是以水分子的形式存在于一种名为林伍德石的蓝色岩石中。

林伍德石是一种于高温高压环境下(约介于525公里至660公里间的地幔)产生的矿物,能将水合物包含于其结构中。这种矿石首次在1969年于Temham陨石中被发现,且被认为很有可能大量地存在于地球的地幔中。

“我想我们最终找到了整个地球水循环的证据,这或许有助于解释地球地表大量液态水的存在。”在西北大学地球物理学家史蒂文·雅各布森看来,他们的发现提供了地表水来源一个合理的解释。

地下有“水”的猜想

据报道,研究人员利用遍布美国的2000多个地震仪分析了500多次地震的地震波。这些地震波会穿透包括地核在内的地球内部,研究人员据此分析地震波穿透的是什么类型的岩石。由于水的存在,地震波传播的速度会降低。结果表明,在美国地下660公里深处,岩石发生部分熔融,且从地震波传播速度减缓来看,这是可能有水存在的信号。

美国的研究人员还在实验室中合成上下地幔过渡带中存在的林伍德石,当模拟地下660公里深处的高温高压环境时,林伍德石发生部分熔融,就像“出汗”一样释放出水分子。

“研究推论的逻辑是,如果地下有水的形式存在——哪怕只有很少一部分,就会降低部分物质的熔点,它们在地幔过渡带高温高压的环境中会产生部分熔融。溶液的波速要比固体矿物的波速低很多,加上水的存在,所以能够强烈降低地震波的波速。当观测到这种情况,首先就会推测是不是有部分熔融的发生。”中科院地质与地球物理研究所“地球深部结构与过程研究室”副研究员张志刚在接受《中国科学报》记者采访时表示,该研究结论是一项逻辑上比较合理的推断。

也就是说,如果在美国的地震仪分析到的地震波穿过地下660公里深处,恰经过发生部分熔融的林伍德石的话,那么地震波传播速度降低的现象就容易理解了——也因此推测:正是由于水的存在,导致了林伍德石的部分熔融。

关于地表水的来源,科学家提出过几种可能的模式,一些人认为是彗星或陨石撞击地球时带来的,也有人认为是从早期地球的内部慢慢渗透出来的。新发现为后一种说法提供了新的证据。

难以定论有“海洋”

然而,尽管此推论在逻辑上能够讲得通,但这种“从现象分析物质成分”的结论是否成立,还难以定论。

同样来自中科院地质与地球物理研究所地球深部结构与过程研究室的研究员林杨挺在接受《中国科学报》记者采访时认为,美国科学家这一发现用地下有水的可能性去解释有其合理性,但其结论还不宜“外延太多”,毕竟局部的现象不能代表整个地幔过渡带圈层均如此。

“地球物理的很多问题是有多解性的。”林杨挺认为,地震仪测到的地震波速的变化,也许有别的解释。他举例说,俯冲板块(通常情况下俯冲板块是指由洋壳组成的大洋板块)相对于地幔是一个“冷而干硬”的东西,它到底能冲到多深?有人认为它穿过了过渡带(地幔转换带),有人认为停留在转换带上面。“如果它穿过了过渡带,洋壳中有很多含水矿物。就像文章中说的,林伍德石含水1.5%。这就有可能说是一个局部的特例。”

是不是特例?判据是什么?林杨挺指出,林伍德石的代表性也许可以说明一些问题。

林杨挺与他的博士研究生曾经在开展南极陨石冲击变质研究中,发现了大量林伍德石。他们通过进一步研究发现林伍德石颗粒的Fa值(FeO的摩尔占比)与拉曼谱峰有很好的线性相关。从而建立了林伍德石Fa值与拉曼谱峰的关系式,从而得到利用拉曼光谱测定林伍德石的化学成分的新方法。

美国矿物学报中有研究曾利用拉曼光谱的方法测出林伍德石FeO的摩尔含量在25%左右。林杨挺认为,这一数据意味着该地区的林伍德石中铁橄榄石占25%左右,这比地幔平均高出8%左右。“这就给了一个信号,这个林伍德石代表性不强。”

“地震波速变化,是不是一定因为水,并非只有一种解释,也许有别的解释;如果是,是不是全球性的,我认为都值得继续考究。”林杨挺总结说。

地球物理学与比较行星学

在采访中,记者发现,科学家对林伍德石的猜想始于地幔转换带,而对其着手研究则始于来自陨石中的此类矿石。这其中又是怎样的联系呢?

张志刚解答了记者的疑惑。原来,限于人们难于拿到地下如此深度的矿石样本,对于地球深部结构和成分的研究,科学家们选择了一种间接的途径——比较行星学。

通俗地说,比较形星学即经由比较行星间特质的差异性来研究行星的学问。地球作为太阳系中一颗行星,对其他类地行星物质成分的研究,可以为地球内部的物理构成提供借鉴。正所谓“它山之石可以攻玉”,随着行星星际探测技术的发展和探测范围的扩大,比较行星学得到了快速发展。

“地球深部研究是一个多学科交叉的点。就好像‘瞎子摸象’一样。比如我们做实验和模拟计算的,摸到的是一条腿,做比较行星学摸到的是另外一条腿,不同学科有不同的角度和推测,但是大家都希望到最后能够得出大象的图景。”张志刚说,“地球物理学与比较行星学可以相互佐证。”

而对于“地球深部是否存在隐形的海洋”这一问题,张志刚认为,找到地表水源头的研究意义重大,美国科学家的发现值得重视,不过对其结果的检验、可靠性及真实性仍需要假以时日。

延伸阅读

林伍德石:固水的石头

橄榄石因颜色如橄榄而得名,宝石级的橄榄石又称翠绿橄榄石或贵橄榄石。橄榄石是镁橄榄石—铁橄榄石类质同象系列中最常见的一个成员,也是这两种端元组分形成的固溶体。橄榄石的成分经常由镁橄榄石(Fo)和铁橄榄石(Fa)这两种端元组分的摩尔百分比表示,例如Fo70 Fa30表示镁橄榄石端元组分占70%的橄榄石。

在常压下,镁橄榄石有非常高的熔点(接近1900℃),铁橄榄石的熔点只有约1200℃。熔点以及其他物理量随橄榄石的成分在镁橄榄石与铁橄榄石这两种端元组分之间连续变化。除氧、硅、镁和铁之外,橄榄石只含有很少量的其他元素。

在地球内部的高温高压条件下,橄榄石的晶体结构不再稳定。在地表下410公里深处,橄榄石会经由相变变成一种孤立双岛状硅酸盐,名为瓦兹利石。在大约520公里深处,瓦兹利石会进一步相变变成具有尖晶石结构的尖晶橄榄石(又称林伍德石)。这些相变导致地幔密度在约410公里和520公里深处具有跃变式增大,因而可以被地震学(地震波波速)手段观测到。

林伍德石以著名的澳洲地球内部学家泰德·林伍德(1930~1993)命名,他建立起一个理论,认为由于超高的压力和温度,过渡带必然产生一种特殊矿物。在地球深部找到一块这样的矿物一直以来都是科学家寻找的目标。

2014年3月,加拿大研究人员在英国《自然》杂志上报告,他们首次发现了来自上下地幔过渡带的一块尖晶橄榄石,其含水量为1.5%。科学家对过渡带是否有水争论了几十年。如果真的有水,这些宝贵资源究竟有多少呢?                                            

http://news.sciencenet.cn/htmlpaper/201461413593912333490.shtm?id=33490

作者:Brandon Schmandt & Steven D. Jacobsen 来源:《科学》 发布时间:2014-6-14 13:59:39

                                                                      科学家发现地球内部有“隐藏的海洋”

       美国科学家12日说,地球内部可能存在着一个水量相当于地表海洋总水量3倍的“隐藏的海洋”。这一发现也许有助于解释地球上海洋的水从何而来。

       美国新墨西哥大学和西北大学的研究人员在《科学》杂志上报告说,这一“隐藏的海洋”位于地球内部410公里至660公里深处的上下地幔过渡带,其水分并不是我们熟悉的液态、气态或固态,而是以水分子的形式存在于一种名为林伍德石的蓝色岩石中。

       研究人员利用遍布全美的2000多个地震仪分析了500多次地震的地震波。这些地震波会穿透包括地核在内的地球内部,由于水会降低地震波传播的速度,研究人员可以据此分析地震波穿透的是什么类型的岩石。结果表明,就在美国地下660公里深处,岩石发生部分熔融,且从地震波传播速度减缓来看,这是可能有水存在的信号。

与此同时,研究人员在实验室中合成上下地幔过渡带中存在的林伍德石,当模拟地下660公里深处的高温高压环境时,林伍德石发生部分熔融,就像出汗一样释放出水分子。

       “我想我们最终找到了整个地球水循环的证据,这或许有助于解释地球地表大量液态水的存在,”西北大学地球物理学家史蒂文·雅各布森说,“几十年来,科学家一直在寻找这一缺失的深层水。”

       地球上水的来源有多种说法,一些人认为是彗星或陨石撞击地球带来的,也有人认为是从早期地球的内部慢慢渗透出来的。新发现为后一种说法提供了新的证据。

       今年3月,加拿大艾伯塔大学研究人员在英国《自然》杂志上报告说,他们首次发现了来自上下地幔过渡带的一块林伍德石,其含水量为1.5%,从而证明有关过渡区含有大量水的理论是正确的。(来源:新华网 林小春)  

   以下评论只代表网友个人观点,不代表科学网观点。

2014-6-16 12:56:19 ifeng512
楼上错怪翻译者了,ringwoodite确实是译作林伍德石。不过,文中“而是以水分子的形式存在于一种名为林伍德石的蓝色岩石中”,这句话确实是乱讲。林伍德石是一种矿物,而不是岩石。

2014-6-15 20:26:03 Ethzliyang
一点科学的态度都没有,就算不知道ringwoodite是什么,也不要随便音译,直接照抄就是了。“林伍德石”是要闹哪样?



http://www.sciencemag.org/content/344/6189/1265.short(《Science》的报道)

ScienceVol. 344 no. 6189 pp. 1265-1268   DOI: 10.1126/science.1253358

REPORT

                                                    Dehydration melting at the top of the lower mantle
  1. 1Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, USA.



  2. 2Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA.


  3. 3Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA.


  4. 4Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA.


  5. 5Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA.


  1. *Corresponding author. E-mail: bschmandt@unm.edu (B.S.); steven@earth.northwestern.edu (S.D.J.)

The high water storage capacity of minerals in Earth’s mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone.

http://www.northwestern.edu/newscenter/stories/2014/06/new-evidence-for-oceans-of-water-deep-in-the-earth.html

                                              NEW EVIDENCE FOR OCEANS OF WATER DEEP IN THE EARTH

                                         Water bound in mantle rock alters our view of the Earth’s composition

                                                                   June 12, 2014 | by Megan FellmanEarth Section

Schematic cross section of the Earth’s interior. The study by Steve Jacobsen and Brandon Schmandt used seismic waves to find magma generated at the base of the transition zone, around 410 miles deep. Dehydration melting at those conditions, also observed in the study’s high-pressure experiments, suggests the transition zone may contain oceans worth of H2O dissolved in high-pressure rock. The findings alter previous assumptions about the Earth’s composition.

                                     

EVANSTON, Ill. - Researchers from Northwestern University and the University of New Mexico report evidence for potentially oceans worth of water deep beneath the United States. Though not in the familiar liquid form -- the ingredients for water are bound up in rock deep in the Earth’s mantle -- the discovery may represent the planet’s largest water reservoir.

The presence of liquid water on the surface is what makes our “blue planet” habitable, and scientists have long been trying to figure out just how much water may be cycling between Earth’s surface and interior reservoirs through plate tectonics.

Northwestern geophysicist Steve Jacobsen and University of New Mexico seismologist Brandon Schmandt have found deep pockets of magma located about 400 miles beneath North America, a likely signature of the presence of water at these depths. The discovery suggests water from the Earth’s surface can be driven to such great depths by plate tectonics, eventually causing partial melting of the rocks found deep in the mantle.

The findings, to be published June 13 in the journal Science, will aid scientists in understanding how the Earth formed, what its current composition and inner workings are and how much water is trapped in mantle rock.

“Geological processes on the Earth’s surface, such as earthquakes or erupting volcanoes, are an expression of what is going on inside the Earth, out of our sight,” said Jacobsen, a co-author of the paper. “ I think we are finally seeing evidence for a whole-Earth water cycle,  which may help explain the vast amount of liquid water on the surface of our habitable planet. Scientists have been looking for this missing deep water for decades.”

Scientists have long speculated that water is trapped in a rocky layer of the Earth’s mantle located between the lower mantle and upper mantle, at depths between 250 miles and 410 miles. Jacobsen and Schmandt are the first to provide direct evidence that there may be water in this area of the mantle, known as the “transition zone,” on a regional scale. The region extends across most of the interior of the United States.

Schmandt, an assistant professor of geophysics at the University of New Mexico, uses seismic waves from earthquakes to investigate the structure of the deep crust and mantle. Jacobsen, an associate professor of Earth and planetary sciences at Northwestern’s Weinberg College of Arts and Sciences, uses observations in the laboratory to make predictions about geophysical processes occurring far beyond our direct observation.

The study combined Jacobsen’s lab experiments in which he studies mantle rock under the simulated high pressures of 400 miles below the Earth’s surface with Schmandt’s observations using vast amounts of seismic data from the USArray, a dense network of more than 2,000 seismometers across the United States.

Jacobsen’s and Schmandt’s findings converged to produce evidence that melting may occur about 400 miles deep in the Earth. H2O stored in mantle rocks, such as those containing the mineral ringwoodite, likely is the key to the process, the researchers said.

“Melting of rock at this depth is remarkable because most melting in the mantle occurs much shallower, in the upper 50 miles,” said Schmandt, a co-author of the paper. “If there is a substantial amount of H2O in the transition zone, then some melting should take place in areas where there is flow into the lower mantle, and that is consistent with what we found.”

If just one percent of the weight of mantle rock located in the transition zone is H2O, that would be equivalent to nearly three times the amount of water in our oceans, the researchers said.

This water is not in a form familiar to us -- it is not liquid, ice or vapor. This fourth form is water trapped inside the molecular structure of the minerals in the mantle rock. The weight of 250 miles of solid rock creates such high pressure, along with temperatures above 2,000 degrees Fahrenheit, that a water molecule splits to form a hydroxyl radical (OH), which can be bound into a mineral’s crystal structure.

Schmandt and Jacobsen’s findings build on a discovery reported in March in the journal Nature in which scientists discovered a piece of the mineral ringwoodite inside a diamond brought up from a depth of 400 miles by a volcano in Brazil. That tiny piece of ringwoodite -- the only sample in existence from within the Earth -- contained a surprising amount  of water bound in solid form in the mineral.

“Whether or not this unique sample is representative of the Earth’s interior composition is not known, however,” Jacobsen said. “Now we have found evidence for extensive melting beneath North America at the same depths corresponding to the dehydration of ringwoodite, which is exactly what has been happening in my experiments.”

For years, Jacobsen has been synthesizing ringwoodite, colored sapphire-like blue,  in his Northwestern  lab by reacting the green mineral olivine with water at  high-pressure conditions.  (The Earth’s upper mantle is rich in olivine.) He found that more than one percent of the weight of the ringwoodite’s crystal structure can consist of water -- roughly the same amount of water as was found in the sample reported in the Nature paper.

“The ringwoodite is like a sponge, soaking up water,” Jacobsen said. “There is something very special about the crystal structure of ringwoodite that allows it to attract hydrogen and trap water. This mineral can contain a lot of water under conditions of the deep mantle.”

For the study reported in Science, Jacobsen subjected his synthesized ringwoodite to conditions around 400 miles below the Earth’s surface and found it forms small amounts of partial melt when pushed to these conditions. He detected the melt in experiments conducted at the Advanced Photon Source of Argonne National Laboratory and at the National Synchrotron Light Source of Brookhaven National Laboratory.

Jacobsen uses small gem diamonds as hard anvils to compress minerals to deep-Earth conditions. “Because the diamond windows are transparent, we can look into the high-pressure device and watch reactions occurring at conditions of the deep mantle,” he said. “We used intense beams of X-rays, electrons and infrared light to study the chemical reactions taking place in the diamond cell.”

Jacobsen’s findings produced the same evidence of partial melt, or magma, that Schmandt detected beneath North America using seismic waves. Because the deep mantle is beyond the direct observation of scientists, they use seismic waves -- sound waves at different speeds -- to image the interior of the Earth.

“Seismic data from the USArray are giving us a clearer picture than ever before of the Earth's internal structure beneath North America,” Schmandt said. “The melting we see appears to be driven by subduction -- the downwelling of mantle material from the surface.”

The melting the researchers have detected is called dehydration melting. Rocks in the transition zone can hold a lot of H2O, but rocks in the top of the lower mantle can hold almost none. The water contained within ringwoodite in the transition zone is forced out when it goes deeper (into the lower mantle) and forms a higher-pressure mineral called silicate perovskite, which cannot absorb the water. This causes the rock at the boundary between the transition zone and lower mantle to partially melt.

“When a rock with a lot of H2O moves from the transition zone to the lower mantle it needs to get rid of the H2O somehow, so it melts a little bit,” Schmandt said. “This is called dehydration melting.”

“Once the water is released, much of it may become trapped there in the transition zone,” Jacobsen added.

Just a little bit of melt, about one percent, is detectible with the new array of seismometers aimed at this region of the mantle because the melt slows the speed of seismic waves, Schmandt said.

The USArray is part of EarthScope, a program of the National Science Foundation that deploys thousands of seismic, GPS and other geophysical instruments to study the structure and evolution of the North American continent and the processes the cause earthquakes and volcanic eruptions.

The National Science Foundation (grants EAR-0748797 and EAR-1215720) and the David and Lucile Packard Foundation supported the research.

The paper is titled “Dehydration melting at the top of the lower mantle.” In addition to Jacobsen and Schmandt, other authors of the paper are Thorsten W. Becker, University of California, Los Angeles; Zhenxian Liu, Carnegie Institution of Washington; and Kenneth G. Dueker, the University of Wyoming.

- See more at:

http://www.northwestern.edu/newscenter/stories/2014/06/new-evidence-for-oceans-of-water-deep-in-the-earth.html#sthash.yU9n9bVI.dpuf


https://za.news.yahoo.com/found-hidden-ocean-locked-deep-earths-mantle-181204475.html

                                 Found! Hidden Ocean Locked Up Deep in Earth's Mantle

By By Joseph Castro, Live Science Contributor | LiveScience.com – Thu, Jun 12, 2014

Deep within the Earth's rocky mantle lies oceans' worth of water locked up in a type of mineral called ringwoodite, new research shows.

The results of the study will help scientists understand Earth's water cycle, and how plate tectonics moves water between the surface of the planet and interior reservoirs, researchers say.

The Earth's mantle is the hot, rocky layer between the planet's core and crust. Scientists have long suspected that the mantle's so-called transition zone,   which sits between the upper and lower mantle layers 255 to 410 miles (410 to 660 kilometers) below Earth's surface, could contain water trapped in rare minerals. However, direct evidence for this water has been lacking, until now. [See Images of Water-Rich Ringwoodite and Earth's Layers]

To see if the transition zone really is a deep reservoir for water, researchers conducted experiments on water-rich ringwoodite, analyzed seismic waves travelling through the mantle beneath the United States, and studied numerical models. They discovered that downward-flowing mantle material is melting as it  crosses the boundary between the transition zone and the lower mantle layer.  

"If we are seeing this melting, then there has to be this water in the transition zone," said Brandon Schmandt, a seismologist at the University of New Mexico and co-author of the new study published today   (June 12) in the journal Science. "The transition zone can hold a lot of water, and could potentially have the same amount of H2O [water] as all the world's oceans." (Melting is a way of getting rid of water, which is unstable under conditions in Earth's lower mantle, the researchers said.)

A water-rich mineral

Ringwoodite is a rare type of mineral that forms from olivine under very high pressures and temperatures, such as those present in the mantle's transition zone. Laboratory studies have shown that the mineral can contain water, which isn't present as liquid, ice or vapor; instead, it is trapped in the ringwoodite's molecular structure as hydroxide ions (bonded oxygen and hydrogen atoms).

In March, another research group discovered an unusual diamond from the mantle that encased hydrous ringwoodite. Though the find suggested the transition zone could contain a lot of water, it was the first and only ringwoodite specimen from the mantle scientists have ever analyzed (all other samples were produced in the lab or found in meteorites), and may not be representative of other mantle ringwoodite. [Shine On: Photos of Dazzling Mineral Specimens]

"Right now, we're one-for-one,  because that ringwoodite had some H2O in it,   but we didn't know if it was normal,"   Schmandt told Live Science. So Schmandt and geophysicist Steven Jacobsen of Northwestern University in Illinois set out to observationally test if other mantle ringwoodite also contains water.

The researchers knew the crystal structure of ringwoodite allows the transition zone to hold water, but that structure changes if the material moves across the boundary to the lower mantle (due to increasing pressures and temperatures). Because the structure of minerals in the lower mantle can't trap water the way ringwoodite can, Schmandt and Jacobsen reasoned the rocks would melt as they flowed from the transition zone to the lower mantle. "Melting is just a mechanism of getting rid of the water," Schmandt said.

To test this hypothesis, Jacobsen and his colleagues conducted lab experiments to simulate what would happen to transition zone ringwoodite as it travels deeper into the Earth. They synthesized hydrous ringwoodite and recreated the temperatures and pressures it would experience in the transition zone by heating it with lasers and compressing it between hard, anvil-like diamonds.

Using their setup, they then slowly increased the temperature and pressure to mimic the conditions in the lower mantle. The ringwoodite transformed into another mineral called silicate perovskite, and transmission electron microscopy showed that the mineral contained silicate melt around single crystals of perovskite.

"What that tells us is if there is similarly hydrated ringwoodite in the transition zone that's dragged down, we would expect it to produce melt," Schmandt said. "Because melt changes how seismic waves propagate, that's a target I can hunt for [with seismometers]."

Finding the melt

Using the Earthscope USArray, a network of portable seismometers across the United States, Schmandt analyzed seismic waves as they passed from the transition zone to the lower mantle. He found the waves slowed as they crossed into the lower mantle, suggesting that melt was present in the boundary. Importantly, the decrease in seismic velocity didn't happen everywhere — models showed the wave velocity decreased only where material was flowing downward from the transition zone to the lower mantle, as the researchers predicted. [Infographic: Earth's Tallest Mountain to Its Deepest Ocean Trench]

The melt produced in the boundary likely then flows back upward, returning to minerals that can hold the water, Schmandt said, adding that this mechanism allows the transition zone to be a stable water reservoir.

"The study] provides critical experimental support for the important role that the transition zone plays in controlling the melting behavior and flux of hydrogen in the deep Earth," Graham Pearson, a mantle geochemist at the University of Alberta, who wasn't involved in the work, told Live Science in an email.

Anna Kelbert, a geophysicist at Oregon State University who also wasn’t involved in the study, notes that scientists have previously used numerous approaches to look for evidence of Earth's interior water reservoir, but this is the first time researchers have searched for clues of the reservoir by focusing on the potential water-induced melting at the bottom of the transition zone. "It provides an important multidisciplinary perspective on this problem," Kelbert said. "It has important implications on our understanding of the behavior of subducting slabs deep in the mantle, and on our understanding of [the] overall water budget/distribution in the Earth."

Schmandt hopes to now analyze seismic data from other areas across the globe and see how common mantle melting is. This would allow researchers to see if there's something special about the subduction history of the mantle beneath North America, or how the Earth's plates have shifted beneath one another over time.

The new findings will also help scientists better understand Earth's water cycle. "The surface water we have now came from degassing of molten rock. It came from the original rock ingredients of Earth," Schmandt said. "How much water is still inside the Earth today relative to the surface?"

Follow Joseph Castro on Twitter. Follow us @livescience, Facebook & Google+. Originally published on Live Science.

Copyright 2014 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

                             加拿大艾伯塔大学研究人员发表于英国《自然》的论文摘要

                        http://www.natureasia.com/zh-cn/nature/highlights/52510/

                                尖晶橄榄石证明地幔过渡带含水

                                                                                                     Nature 507 (7491)   发表日期:2014年3月13日

       目前尚不清楚固体地球内还残留有多少水以及这些残留的水到底在哪里,其中很多间接测量工作都产生了冲突的结果。在这篇论文中,Graham Pearson等人提供了来自巴西Juína一个金刚石包裹体、关于尖晶橄榄石在陆地上已知首次出现的证据。尖晶橄榄石是橄榄石的一种高压多晶型,首次是在陨石中发现的,被认为是地幔过渡带的一个主要组成成分。这种包裹体富含水的性质提供了直接证据,证明这个过渡带至少是局部含水的,含量大约为1% (重量比)。


http://www.nature.com/nature/journal/v507/n7491/full/nature13080.html

                                   加拿大艾伯塔大学研究人员发表于英国《自然》的原文摘要

           Hydrous mantle transition zone indicated by ringwoodite included within diamond
  • D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans & L. Vincze 

  •                                             (13 March 2014)

  • The ultimate origin of water in the Earth’s hydrosphere is in the deep Earth—the mantle.  Theory1and experiments2, 3, 4 have shown that although the water storage capacity of olivine-dominated shallow mantle is limited,  the Earth’s transition zone, at depths between 410 and 660kilometres,  could be a major repository for water, owing to the ability of the higher-pressure polymorphs of olivine—wadsleyite and ringwoodite—to host enough water to comprise up to around 2.5 per cent of their weight. A hydrous transition zone may have a key role in terrestrial magmatism and plate tectonics5, 6, 7, yet despite experimental demonstration of the water-bearing capacity of these phases,  geophysical probes such as electrical conductivity have provided conflicting results8, 9, 10, and the issue of whether the transition zone contains abundant water remains highly controversial11. Here we report X-ray diffraction,  Raman and infrared spectroscopic data that provide, to our knowledge, the first evidence for the terrestrial occurrence of any higher-pressure polymorph of olivine:  we find ringwoodite included in a diamond from Juína, Brazil. The water-rich nature of this inclusion, indicated by infrared absorption, along with the preservation of the ringwoodite, is direct evidence that, at least locally, the transition zone is hydrous, to about 1 weight per cent. The finding also indicates that some kimberlites must have their primary sources in this deep mantle region.

                            一篇基于加拿大研究人员发表于英国《自然》论文的访谈性科普文章

http://www.news.com.au/technology/environment/ringwoodite-discovery-vast-ocean-hiding-beneath-earths-surface/story-fnjwvztl-1226853417746

http://www.heraldsun.com.au/technology/ringwoodite-discovery-vast-ocean-hiding-beneath-earths-surface/story-fnjww4q9-1226853417746?nk=23bcdaf54d99183d5822d2af808e00fe

http://www.perthnow.com.au/technology/ringwoodite-discovery-vast-ocean-hiding-beneath-earths-surface/story-fnjww4qc-1226853417746?nk=23bcdaf54d99183d5822d2af808e00fe

                

       Ringwoodite discovery: Vast ocean hiding beneath Earth's surface

                                                                MARCH 13, 2014 11:04AM


The discovery of the rare mineral Ringwoodite points towards the possibility of hidden oc

The discovery of the rare mineral Ringwoodite points towards the possibility of hidden oceans buried beneath the Earth's surface. Source: University of Alberta Source: Supplied

THE discovery of an elusive mineral, named after an Australian geologist, has led scientists to surmise there is a vast reservoir of water deep in Earth's mantle - as visualised by Jules Verne.

Writing in the journal Nature, scientists said they had found ringwoodite, pointing to the existence of water deep in Earth's mantle, 400km to 600km beneath our feet.

Ringwoodite is named after Australian geologist Ted Ringwood, who theorised that a special mineral was bound to be created in the so-called transition zone sandwiched between the upper and lower layers of Earth's mantle because of the ultra-high pressures and temperatures there.

The find backs once-contested theories that the transition zone,     or at least significant parts of it, was water-rich, the investigators said.

"This sample really provides extremely strong confirmation that there are local wet spots deep in the Earth in this area," said Graham Pearson of Canada's University of Alberta, who led the research.

"That particular zone in the Earth, the transition zone, might have as much water as all the world's oceans put together." A piece of ringwoodite has been a long-sought goal. It would resolve a long-running debate about whether the poorly understood transition zone is dry or water-rich.

But until now, it has only ever been found in meteorites.

Geologists had simply been unable to delve deep enough to find any sample on Earth.

All this changed in 2008 when amateur gem hunters digging in shallow river gravel in the Juina area of Mato Grosso, Brazil, found a tiny, grubby stone called a brown diamond.

Measuring just three millimetres across and commercially worthless, the stone was acquired by the scientists when they were on a quest for other minerals. But this turned out to be a bonanza. In its interior, they found a microscopic trace of ringwoodite - the first terrestrial evidence of the ultra-rare rock.

"It's so small, this inclusion, it's extremely difficult to find, never mind work on," Pearson said in a press release, paying tribute to the diligent work of grad student John McNeill.

The team theorise the brown diamond rocketed to the surface during a volcanic eruption, hitchhiking in a stream of kimberlite, the deepest of all volcanic rocks.

Years of analysis, using spectroscopy and X-ray diffraction, were needed in specialised labs to confirm the find officially as ringwoodite.

Hans Keppler, a geologist at the University of Bayreuth in Germany, cautioned against extrapolating the size of the subterranean water find from a single sample of ringwoodite. "In some ways it is an ocean in Earth's interior, as visualised by Jules Verne ... although not in the form of liquid water," Keppler said in a commentary also published by Nature.

Originally published as Vast ocean hiding beneath Earth's surface


http://www.bioon.com/biology/Ecology/592712.shtml

                                                   Nature:研究发现地幔蕴含水量相当于全部海洋

                                                   作者:悠悠   来源:腾讯科学   2014-3-14 20:46:03

最新研究表明,来自地幔过渡层的亲水矿物质尖晶橄榄石含有水分子,科学家猜测地幔有巨型蓄水池,相当于海洋总和。

据英国每日邮报报道,目前,科学家发现地幔含有一个巨大的蓄水层,其蓄水量大于地球海洋总和。

加拿大研究人员称,通过分析一种罕见矿石,证实地幔深层含有大量水资源,深度为地下400-600公里。这项最新研究让人们联想到150年前法国科幻小说家儒勒-凡尔纳著名小说《地心历险记》,小说中描绘地面之下存在着巨大的海洋。

目前最新证据表明一种叫做尖晶橄榄石(ringwoodite)的亲水矿物质来源于地幔上层和下层之间的过渡层。这项研究报告发表在近期出版的《自然》杂志上。

分析结果显示,尖晶橄榄石1.5%成份是水分子,地幔过渡层具有重要研究价值,该区域含有大量水资源。

研究报告负责人加拿大阿尔伯塔大学格雷厄姆-皮尔森(Graham Pearson)说:“尖晶橄榄石样本表明地幔存在潮湿的蓄水层,这里的含水量相当于地球所有海洋的总和。”

尖晶橄榄石的命名源自澳大利亚地质学家特德-林伍德(Ted Ringwood),他认为一种特殊矿物质形成于地幔过渡层,因为该区域具有超高压力和温度。

这将解释长期以来科学家们的置疑——缺乏理解的地幔过渡层究竟是极度干燥,还是充满水分。但此前科学家仅在陨石中发现尖晶橄榄石,地球学家尚不能钻探至地幔过渡层采集任何样本。

幸运的是,2008年宝石钻探爱好者在巴西马托格拉索地区一处浅河砾石中进行挖掘,偶然发现一种叫做“褐色钻石”的微型石粒。

褐色钻石直径仅3毫米,没有商业价值,是科学家探寻其它矿物质时偶然发现的。但在这种石粒内部发现微观尖晶橄榄石,首次证实这种超级罕见矿石存在于地球,正是基于这项研究发现才获得后续重要的研究成果。(生物谷Bioon.com)


http://www.igg.cas.cn/xwzx/kyjz/200506/t20050624_2067625.html

                                 黄晓葛等用新方法模拟计算了地幔转换带中的水含量
                                                                                      2005-06-24 
 

水的存在将极大地影响和改变岩石矿物的电导率、塑性变形以及扩散特征,在地幔物质的运动过程中扮演着重要的角色。但地幔中到底含有多少水,地球物理学家们一直并不十分清楚。我所年轻学者黄晓葛助理研究员及其合作者近期在国际著名刊物《Nature(20054月第434)上发表了她们的研究实验结果。在Kawai-1000型多顶砧压机上,利用橄榄石相变人工合成含水地幔转换带矿物wadsleyite 和ringwoodite,其水含量(CH)从0.03wt%到2.0wt%变化不等。在压力14-16GPa、温度873K-1273K、通过Mo:MoO固体反应控制氧逸度的实验条件下,利用电阻抗谱分析方法,测量获得了样品在不同物理、化学条件下的电导率值,实验结果显示:wadsleyite和ringwoodite的电导率与水含量的幂指数(CXH)呈正比,其幂指数值X分别为0.66和0.69,表明水极大地增强了样品的电导率;同时也表明在该实验条件下,含水wadsleyite 和ringwoodite样品的主要电荷载体是自由质子。另外,结合大地电磁反演获得的电导率结果和实验数据,黄晓葛等首次推断出太平洋地区地幔转换带中的水含量约为0.1wt%-0.2wt%((1.5-3.0)x104 ppm H/Si)左右,远远高于上地幔的水含量(100-500ppm H/Si),这或许表明发生在410km处的地幔转换带的物理过程远比想象的复杂,岩石在这里可能已经发生了部分熔融,另外大量水的介入对于地幔矿物的相变和力学强度都产生了很大的影响。该实验研究结果对地幔对流、板块俯冲和幔内高导成因等地球深部问题的深入研究具有十分重要而深远的意义。

黄晓葛是继我所叶凯(2000)、朱日祥(2001、2004)和郭正堂(2002)之后第四位在该国际著名刊物上发表研究论文的青年科研人员。


注:因GOOGLE失联多日,科学文献检索的便利性与准确性明显下降。

又:对于此文的归类,我不知标为原创还是转载,说原创吧,是剪辑而成;说转载吧,我搜索并组合了多篇文献,并且穿插了我的一些点评。好在博文正文已经标得很清楚,标题就姑且写成“原创”吧。副标题中的“举一反三”之一为“Nature:研究发现地幔蕴含水量相当于全部海洋” ("That particular zone in the Earth, the transition zone, might have as much water as all the world's oceans put together.",摘自《Vast ocean hiding beneath Earth's surface》一文)。



https://blog.sciencenet.cn/blog-350729-807688.html

上一篇:“随机”技巧从未在气候模型中找到归宿?!《Science》报道的报道
下一篇:读过唐诗《登鹳雀楼》一诗的大小伙伴们如是写、如是说
收藏 IP: 58.240.141.*| 热度|

1 Vetaren11

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-5 17:33

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部