Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs.
Geophysical Research Letters
Volume 21, Issue 18, pages 1999–2002, 1 September 1994
Atmospheric rivers and bombs
Yong Zhu, Reginald E. Newell
Filamentary structure is a common feature of atmospheric water vapor transport; the filaments may be termed “atmospheric rivers” because some carry as much water as the Amazon [Newell et al., 1992]. An extratropical cyclone whose central pressure fall averages at least 1 hPa hr−1 for 24 hours is known in meteorology as a “bomb” [Sanders and Gyakum, 1980]. We report here an association between rivers and bombs. When a cyclonic system is penetrated by a river, the cyclonic center moves to be close to the position occupied by the leading edge of the river twelve hours previously and the central pressure falls. If the river then moves away from the cyclone, the central pressure rises. Based on a pilot study of pressure fall and water vapor flux convergence for two winter months, the cause of the explosive deepening appears to be latent heat liberation. This is substantiated by composite maps of seven Atlantic and seven Pacific bombs which show that the flux convergence near the bomb center has a comma cloud signature. The observed association may be useful in forecasting 12-hour direction of motion and pressure change of rapidly developing cyclonic systems; the incorporation of better moisture data into numerical forecasting models may be the reason for the reported increase of skill in the prediction of bombs in recent years.
A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers
YONG ZHU AND REGINALD E. NEWELL
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
(Manuscript received 21 November 1996, in final form 11 July 1997)
ABSTRACT
A new algorithm is applied to study water vapor fluxes in the troposphere using wind and moisture data from the European Centre for Medium-Range Weather Forecasts. The fluxes are divided into filamentary structures known as tropospheric rivers and what are termed here broad fields. The results show that the tropospheric rivers may carry essentially the total meridional transport observed in the extratropical atmosphere but may occupy only about 10% of the total longitudinal length at a given latitude. The transient fluxes in traditional studies do not catch the filamentary structures completely and may therefore underestimate the fraction of transport assigned to moving systems, as well as omitting the geographical concentration. The mean flow and eddy fluxes evaluated by the new algorithm are considered to be more physically realistic.
ARs(Atmospheric Rivers) are the water-vapor rich part of the broader warm conveyor belt (e.g., Browning, 1990; Carlson, 1991), that is found in extratropical cyclones ("storms"). They result from the action of winds associated with the storm drawing together moisture into a narrow region just ahead of the cold front where low-level winds can sometimes exceed hurricane strength.
The term AR was coined in a seminal scientific paper published in 1998 by researchers Zhu and Newell at MIT (Zhu and Newell 1998). Because they found that most of the water vapor was transported in relatively narrow regions of the atmosphere (90% of the transport occurred typically in four to five long, narrow regions roughly 400 km wide), the term atmospheric river was used.
A number of formal scientific papers have since been published building on this concept (see the publication list), and forecasters and climate researchers are beginning to apply the ideas and methods to their fields. The satellite images at right show strong ARs as seen by satellite.
An atmospheric river is a narrow corridor or filament of concentrated moisture in the atmosphere. Atmospheric rivers consist of narrow bands of enhanced water vapor transport, typically along the boundaries between large areas of divergent surface air flow, including some frontal zones in association with extratropical cyclones that form over the oceans.[1][2][3][4]
The term was originally coined by researchers Reginald Newell and Yong Zhu of the Massachusetts Institute of Technology in the early 1990s, to reflect the narrowness of the moisture plumes involved.[1][3][5] Atmospheric rivers are typically several thousand kilometers long and only a few hundred kilometers wide, and a single one can carry a greater flux of water than the Earth's largest river, the Amazon River.[2] There are typically 3-5 of these narrow plumes present within a hemisphere at any given time.
Atmospheric rivers have a central role in the global water cycle. On any given day, atmospheric rivers account for over 90% of the global meridional (north-south) water vapor transport, yet they cover less than 10% of the Earth's circumference.[2]