Theorem 1.10. Let R be a perfectoid K -algebra. Let S/R be finite étale. Then S is a perfectoid K -algebra, and Sᵒ is almost finite étale over Rᵒ.
---- 从完代数 R 出发,若找到 R 上的 S 是 finite étale. 则 S 就成了(新的)完代数,而 Sᵒ 在 Rᵒ 上几乎 finite étale.
评论:若能消除“几乎”就完美了. (期待后文会这样做).
---- 若能实现,就会出现完代数序列了.
.
In fact, as for perfectoid fields, it is easy to construct a fully faithful functor from the category of finite etale Rᵇ -algebras to finite etale R -algebras, and the problem becomes to show that this functor is essentially surjective.
But locally on X = Spa(R, R⁺), the functor is essentially surjective by the result for perfectoid fields; one deduces the general case by a gluing argument.
---- 但局部地在 X 上,由完域的结果该函子本质满射;由此可用胶水论述导出一般情形.
.
Using this theorem, one proves the following theorem.
---- 使用该定理,可以证明如下定理.
.
Here, Xet denotes the etale site of a perfectoid space X, and we denote by Xet~ the associated topos.