路漫漫其修远兮分享 http://blog.sciencenet.cn/u/zhpd55 追求科学,勇于探索,苦海无涯,愿作小舟。

博文

首次看到中子星猛撞

已有 8020 次阅读 2017-10-17 10:33 |个人分类:新观察|系统分类:科研笔记| 引力波, 中子星, 千倍新星(kilonova)

首次看到中子星猛撞

诸平

据物理学家组织网(Phys.org20171016转载来自法新社(AFP)的消息,科学家已经首次看到了中子星的猛撞,这可能对于宇宙转换的理解有所帮助。2013美国宇航局(NASA)的哈勃太空望远镜已经提供了当时认为是最过硬的铁证,说明短周期γ射线暴发(短GRB,短暴)起源于两颗超致密天体合并,这两个天体可以是一对很小的中子星,或者一颗中子星与一个黑洞。该决定性证据是哈勃对一个短γ暴触发的余辉的近红外观测。此余辉首次揭示了一类新的恒星爆发现象——“千倍新星kilonova),它是与短暴相伴随的。千倍新星大约是与白矮星相关的新星爆发亮度的千倍。这种新星的亮度约为大质量恒星坍缩导致的超新星爆发的0.1~0.01倍。下面图1是来自欧洲南方天文台European Southern ObservatoryESO的照片,它显示了两个小非常致密的中子星之间合并和爆炸的千倍新星(kilonova现象。这样一个非常罕见的事件将有望产生引力波gravitational waves和短伽马射线short gamma-ray burst,这两个中子星是2017817分别由激光干涉引力波天文台(Laser Interferometer Gravitationalwave ObservatoryLIGO)-弗戈(LIGO-Virgo和费米/国际伽玛射线天体物理实验室(Fermi/INTEGRAL观察到的。后续详细观察许多ESO望远镜进行证实上述观察结果,看到离地球约1.3亿光年星系NGC 4993the galaxy NGC 4993的确就是千倍新星(kilonova。 这样的物体是宇宙中非常重的化学元素如金Au铂(Pt的主要来源。

Fig.1 This artist's impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO-Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe. Credit: ESO/L. Calçada/M. Kornmesser

激光干涉引力波天文台(LIGO)科学合作组织和处女座引力波探测器(Virgo)合作组织联合召开发布会,宣布再次探测到时空的涟漪。这是人类第五次探测到引力波。然而科学界的兴奋之情甚至不亚于第一次探测到引力波时。因为与之前被探测到的4个引力波信号不同,这次探测到的引力波信号GW170817来自1.3亿光年外两颗并合的中子星,而且科学家第一次同时观测到了引力波及其电磁对应体,以及科学家预言的巨新星现象。2017817,上述发现的团队在世界各地举行新闻发布会,十几相关的科学论文在世界顶级学术期刊发表。更多信息请注意浏览相关报道:

Neutron star smashup seen for first time, 'transforms' understanding of Universe

魏焱明博主的“宇宙元素兴衰的密辛--元素周期表一瞥”和“引力子射线的释放与吸收导致了宇宙膨胀”的博文也值得一读。其他相关报道摘引如下,仅供参考.

原标题:引力波的源头,终于出现在视线中,一图读懂它和你有什么关系

  传言终获证实。北京时间2017年10月16日22点,激光干涉引力波天文台(LIGO)科学合作组织和处女座引力波探测器(Virgo)合作组织联合召开发布会,宣布再次探测到时空的涟漪。

  这是人类第五次探测到引力波。然而科学界的兴奋之情甚至不亚于第一次探测到引力波时。因为与之前被探测到的四个引力波信号不同,这次探测到的引力波信号GW170817来自1.3亿光年外两颗并合的中子星,而且科学家第一次同时观测到了引力波及其电磁对应体,以及科学家预言的巨新星现象。

  1  迄今最强的引力波信号

  “这是我们迄今观测到强度最强的引力波信号,比第一次观测到的双黑洞引力波信号要强得多。”LIGO科学合作组织爆发源分析组联席主席、英国格拉斯哥大学教授、北京师范大学特聘外国专家Ik Siong Heng表示,它与之前的双黑洞绕转产生的引力波信号非常类似,但持续时间更长。“探测器中GW170817信号持续时间超过1分钟,之前的双黑洞并合引力波信号只有1秒左右。”

双中子星并合过程中的物质抛射和喷流形成数值模拟双中子星并合过程中的物质抛射和喷流形成数值模拟

  2017年8月17日,LIGO与Virgo的三台探测器先后接收到引力波信号GW170817。在探测到引力波信号GW170817后的1.7秒,美国国家航空航天局(NASA)的费米卫星探测到了一个伽马射线暴GRB170817A。在之后不到11个小时之内,位于智利的Swope望远镜报告在星系NGC4993中观测到明亮的光学源。在接下来的几个星期里,无数望远镜将目光对准这片天区,记录下这一事件发生之前100秒至之后几个星期的信号。

  “最初GW170817信号到达时,LIGO位于美国路易斯安那州利文斯通的探测器数据中存在杂散噪声。根据这些噪声的特征,我们将它从分析中扣除了。”Ik Siong Heng说,此后研究人员确认在此期间没有人为的模拟信号注入,那些信号确实来自遥远的天体。

  根据这些记录,科学家复原出故事发生的过程:在距离地球1.3亿光年的长蛇座星系NGC4993中,两颗中子星互相绕转。在并合前约100秒时,它们相距400公里,每秒钟互相绕转12圈,并向外辐射引力波。它们越转越近,直至最终碰撞在一起,形成新的天体,并发出电磁辐射。

双中子星并合后发出短伽玛暴和巨新星辐射的示意图双中子星并合后发出短伽玛暴和巨新星辐射的示意图

  中子星是恒星演化末期形成的一类致密天体。虽然它的半径只有十几公里,质量却与太阳相当。中子星到底有多硬?其内部物质以何种状态存在?这些一直是科学家感兴趣的问题。

  根据观测到的引力波信号,科学家估算出两颗中子星的质量、半径,并对其密度给出了保守的限制,帮助排除了那些对于中子星密度估计过低的理论模型。“引力波信号GW170817的演变,尤其是接近并合阶段的信号演变,受到中子星自身性质的影响。如果中子星更致密一点,或者更稀松一点,引力波的信号都会不同。”Ik Siong Heng说。

  2  期待中的电磁对应体

  “这个结果来得太快,本以为要在2020年左右才能观测到第一例双中子星并合。”中科院紫金山天文台研究员吴雪峰在接受科技日报记者采访时难掩兴奋。

  与双黑洞并合不同,双中子星并合过程不仅向外辐射出引力波,还会在多个波段发出电磁辐射,从而被望远镜观测到。那些在发出引力波同时,又被望远镜观测到的天体被称为引力波的电磁对应体。

  天文学家为何对引力波的电磁对应体如此感兴趣?“引力波都是一次性的,无法重复观测。其电磁对应体则不是这样。”北京师范大学天文学系副教授高鹤解释说,“此外引力波信号自身存在一定缺陷,比如信号十分微弱,信号源的定位误差非常大,仅仅利用引力波探测无法确认信号来自哪里。” 高鹤说,电磁波段是目前发展最完善、理论研究最透彻的观测窗口,也是现有探测手段与探测仪器最丰富的窗口。“只有实现了引力波与电磁波的联合探测,才可以证认引力波源的天体物理起源,并对其天体物理性质开展进一步的研究。”

 激光干涉引力波天文台(LIGO)激光干涉引力波天文台(LIGO)

  LIGO与Virgo的探测目标是恒星级致密天体,也即黑洞、中子星之间并合发出的引力波。在这一探测范围内,双中子星并合、中子星与黑洞并合被认为是可能的引力波电磁对应体候选者。在LIGO发展的早期,双中子星并合曾被认为是引力波观测的首要目标。

  在8月17日探测到的并合中,科学家尚不清楚,最终是形成了更大质量的中子星,还是黑洞。但已知的是,新天体的质量约为2.74倍太阳质量,而在这个过程中损失的质量,主要转化成引力波和电磁波,辐射向宇宙各个方向。

  3   找到金银等元素诞生地

  科学家对这次观测兴奋不已,还因为观测将双中子星并合与短伽马射线暴直接联系在一起,并首次观测到巨新星现象,让科学家能够深入了解双中子星并合的物理过程。

  所谓伽马射线暴,是天空中某一个方向伽马射线辐射突然增亮的现象。根据伽马射线暴时间长于或短于2秒,可分为长暴与短暴。科学家认为,长伽马射线暴与大质量恒星塌缩形成黑洞的过程相关,短伽马射线暴则源自双中子星并合或中子星与黑洞并合。前者已被大量观测所证实,后者却一直没有找到直接观测证据。

  巨新星则是1998年北京大学教授李立新(当时为普林斯顿大学博士生)与普林斯顿大学已故教授Bodhan Paczynski合作提出的构想。“双中子星并合时向外抛射的物质会通过快中子过程形成金、银等重元素,并形成光学和近红外辐射。” 李立新说,这些辐射现象比超新星的亮度暗100倍,比普通新星亮1000倍,被称为巨新星或千新星。

  在此次观测中,科学家捕获了引力波信号、短伽马射线暴信号以及光学信号。后续分析证明这些信号互相关联,均来自中子星并合。我国在南极大陆安装的南极巡天望远镜AST3也捕获了并合的光学信号。

  “有多名学者对巨新星理论进行过完善,这次的观测结果非常吻合完善后的理论构想。”李立新说。

  “8月份,南极的冬天刚刚过去,目标天体的地平高度较低,每天有2个小时左右的观测时间。8月18日起,我们进行了10天的观测,获得了目标天体的91幅图像,并最终得到目标天体的光变曲线,与巨新星理论预测高度吻合。”吴雪峰表示。

  2013年以来,科学家已经发现多个巨新星候选体。“它们之所以只能被称为候选体,是因为只有一两个光学信号点,并没有获得光变曲线,特别是没有同时观测到引力波,用以佐证它们来自双中子星并合。”吴雪峰说。

  “理论上所有双中子星并合都会形成巨新星。但通常它们比较暗弱,因此能不能看到取决于它们与我们的距离。”李立新说,幸运的是,这两颗中子星离我们并不遥远。

  “目前观测到的双中子星并合引力波相对来说都比较近,因此能为天文学家寻找巨新星提供参考。”Ik Siong Heng说。而在伽玛暴研究方面,引力波能提供双中子星及并合物的质量、自旋等信息。“这些基本特征能让天体物理学家构建模型,解释观测到的伽玛暴辐射。”

  4   检验宇宙规律的新信使

  引力波与电磁波携带着天体不同类型的信息。引力波及其电磁对应体的发现,有助于科学家结合不同信息研究天体的性质,并检验宇宙的基本规律。


例如哈勃常数,它是衡量宇宙膨胀速度的重要参数。目前,可通过测量Ia型超新星、重子声波震荡、宇宙微波背景等多种方式得到其数值。然而,随着探测精度的提高,测量值的分歧越来越明显。例如通过测量临近Ia型超新星得到的哈勃常数数值,明显大于普朗克太空卫星通过宇宙微波背景观测得到的哈勃常数数值。引力波及其电磁对应体的发现,将提供测量哈勃常数的独立渠道。“可以通过引力波波形得出波源的距离,由电磁波对应体提供红移信息,根据距离红移关系测量哈勃常数。”北京师范大学天文系教授朱宗宏说。

  在最新的观测中,LIGO科学合作组织进行了这个尝试,得出的哈勃常数数值为70公里/(秒·百万秒差距)。“由于测量过程需要用到引力波的波形信息,目前这一测量并不准确。”朱宗宏说,“未来结合引力透镜方法,有望将哈勃常数的误差限制在1%之内,这个精度远高于目前光学波段的测量精度。”

  注:文中图片除注明外均来自网络

原标题:人类首次发现双中子星碰撞出的引力波,中国做出重要贡献

新华社北京10月16日电(记者林小春王珏玢彭茜)全球多国科学家16日同步举行新闻发布会,宣布人类第一次直接探测到来自双中子星合并的引力波,并同时“看到”这一壮观宇宙事件发出的电磁信号。

这张由加州理工学院和牛津大学提供的图片显示的是双中子星GW170817合并的射电波观测图象。新华社发

美国东部时间8月17日8时41分(北京时间20时41分),美国“激光干涉引力波天文台”(LIGO)捕捉到这个引力波信号。此后2秒,美国费米太空望远镜观测到同一来源发出的伽马射线暴。

这是人类历史上第一次使用引力波天文台和电磁波望远镜同时观测到同一个天体物理事件,标志着以多种观测方式为特点的“多信使”天文学进入一个新时代。

“几十年来,我们一直孜孜以求准备探测双中子星合并的引力波,”美国加州理工学院LIGO数据分析小组负责人艾伦·温斯坦教授说,“那天早上,我们所有的梦想成真。”

LIGO项目组在美国华盛顿发布这一重大发现。中国、德国、英国和法国等国科学家也各自举行新闻发布会。相关论文发表在《科学》《自然》等学术期刊上。

引力波是由黑洞、中子星等碰撞产生的一种时空涟漪,宛如石头丢进水里产生的波纹。百年前,爱因斯坦广义相对论预言了引力波的存在,但直到2015年人类才首次探测到引力波,3名美国科学家因此获得今年的诺贝尔物理学奖。

在8月17日的事件中,全球约70个地面及空间望远镜从红外、X射线、紫外和射电波等波段开展观测,确认引力波信号来自距地球约1.3亿光年的长蛇座内NGC4993星系。

美国田纳西大学天体物理学教授迈克尔·吉德里告诉新华社记者,多信使天文学结合使用多种探测手段,是引力波天文学的一个“圣杯”,“这样的探测将在天文学和天体物理的许多领域开启全新的探索途径。”

中国紫金山天文台副研究员金志平参与的国际团队,通过对此次引力波光学信号的观测和光谱分析,首次提供确凿证据证实,中子星合并是宇宙中金银等元素的主要起源。金志平说:“这就是宇宙中的‘巨型黄金制造厂’。”

科普:引力波与宇宙级“盲人摸象”

新华社北京10月16日电(记者黄堃林小春)最新关于双中子星合并产生引力波的发现备受关注。许多科学家评论说,这标志着“多信使天文学”进入一个新时代。那什么是多信使天文学?打个比方,这就是宇宙级的“盲人摸象”。

“我们常说天文学研究是‘盲人摸象’,因为宇宙太大了,要了解它太难了,一种手段往往只能了解一个方面的信息,”中国科学院国家天文台科学传播中心主任郑永春研究员说,“引力波提供了一种与以往观测方式完全不同的手段,使多信使天文学进入一个新时代。”

两颗中子星的并合会产生剧烈的爆炸,这样的事件会把重元素抛洒到太空中。图片来源:ESO/L. Calçada/M. Kornmesser

从古人单凭肉眼仰望星辰,到伽利略第一个将天文望远镜对向星空,人类曾经观察宇宙的唯一方式就是光线。但这种观测不仅受到天气条件的约束,所获得的信息也受到可见光载体的限制。

随着科学的发展,人们逐渐认识到在可见光之外,宇宙中还存在X射线、无线电波等看不见的电磁波。通过探测它们,可以触摸到宇宙这只“大象”的另外一些方面。比如黑洞的引力让光线也无法逃脱,人们无法看见黑洞,但是它会释放出很强的X射线,让天文学家得以分析黑洞的若干性质。

“X射线、可见光、无线电波都是电磁波,只是波长不同,所以逐渐发展出‘全波段天文学’,就是用各种波段来研究同一个天文现象,能得到更客观和更深刻的认识,”郑永春说,“还是用‘盲人摸象’打比方,用不同方式摸得多了,宇宙的‘形态’也能慢慢呈现出来。”

引力波的发现,又提供了一种全新的“摸象”方式。引力波是与电磁波本质不同的物理现象,虽然百年前爱因斯坦的广义相对论就预言了引力波的存在,但由于相关信号非常微弱,直到2015年才由美国“激光干涉引力波天文台”(LIGO)第一次探测到由双黑洞合并产生的引力波信号。

科学家想象中的中子星内部结构。图片来源:Wikipedia | 翻译:易舒序

本次LIGO项目组宣布发现的引力波,来自距地球约1.3亿光年处的双中子星合并。与黑洞合并只产生引力波不同的是,中子星合并除了产生引力波外,还发出了大量的电磁波。对于这次事件,全球约70个地面及空间望远镜从红外、X射线、紫外和射电等波段进行了观测。这是有史以来第一次,人类同时探测到来自同一个天文事件的引力波与电磁波。

这就是让天文学家感到兴奋的“多信使天文学”。引力波和电磁波作为不同的“信使”,可以告诉我们同一个天文事件在不同方面的信息。美国田纳西大学天体物理学教授迈克尔·吉德里说,“多信使天文学”是天文学家长期追求的“圣杯”,将对相关领域的未来产生巨大影响。

从肉眼观星到使用望远镜,从“全波段天文学”到“多信使天文学”,人类认识宇宙的手段在逐渐丰富,这头仍有不少谜团的宇宙“大象”,最终会向人类展示出它的真面目。

LIGO首次探测到中子星合并引力波事件,全球多家天文台同时发布!


2017年10月16日北京时间22时许,LIGO和Virgo联合发布重大消息,LIGO和Virgo于今年8月首次探测到中子星合并产生的引力波信号及电磁对应体。NASA、欧洲南方天文台和紫金山天文台等也都在同一时间发布这一消息。

2015年9月14日,激光干涉引力波天文台(LIGO)首次直接探测到双黑洞合并产生的引力波。在那之后,LIGO又陆续确认了3个引力波信号。引力波信号的发现证实了爱因斯坦100年前所做的预测,弥补了广义相对论实验验证中最后一块缺失的拼图。但之前的引力波信号均来自双黑洞的合并,因此只会出现引力波,而无法发射电磁辐射。也就是说,除了LIGO和处女座干涉仪(Virgo),天文望远镜根本无法探测到引力波。

因而,天文学家希望能够从其他宇宙灾难,比如中子星的合并中探测到引力波。这类事件除了能够引起引力波外,还能发射出电磁波段的辐射——从无线电波到γ线。

2017年8月17日,LIGO和Virgo在4000万秒差距(1.3亿光年)之外的NGC 4993星系内首次探测到了两颗中子星的合并。此次事件被命名为GW170817,事件产生了引力波和电磁辐射,在该事件两秒后发生了一次伽玛射线暴。

NGC 4993星系

本周《自然》和《自然-天文学》在线发表了7篇论文,报告了两颗中子星合并带来的各种新发现。根据其中6篇论文,在GW170817事件中,还产生了伽玛射线、X射线、可见光和红外光。这些论文揭示了该事件的特征,包括颜色(先蓝后变红)和几何特征。这些论文证实了长期以来的一种预测:双中子星合并会喷射辐射物质——低亮度爆发事件“千新星”的一部分。上述研究还表明,中子星合并是宇宙中部分超铁元素的主要来源,之前它们的起源一直无法确定。其中一篇论文报告称对一束高速物质喷流的观测可能离轴,这或有助于解释为什么伽玛射线暴通常看上去比较暗。

在另一篇《自然》论文中,作者利用GW170817的特性测量了哈勃常数——一种用于描述宇宙扩张的测量单位。GW170817是第一个发生在已知宿主星系内的引力波事件。作者使用宿主星系距离计算出的哈勃常数约为70 km/每秒/百万秒差距,与之前的预估值一致。

中子星合并告诉我们什么?

由黑洞合并引发的引力波信号持续时间很短,通常只有一秒甚至更短。但中子星合并引发的信号可能持续一分钟:中子星比黑洞的质量要小,由于合并而产生的引力波强度不如黑洞,因此比起黑洞,中子星的轨道衰减和相互融合需要花费更长的时间。更长的持续时间让研究人员能够对爱因斯坦的广义相对论进行更精确的检验,同时也可能为中子星的起源提供更多线索。

短伽玛射线暴的观测本身也具有重要的意义,它与引力波的关联证实了数十年来,伽玛射线暴源于中子星合并的理论。此外,NGC4993距离我们4千万秒差距,这可能是有记录以来的最近的一次短伽玛射线暴。要知道,大部分此类事件都发生在与我们相距几十亿秒差距的遥远宇宙。

目前,我们对中子星的结构的认知还十分有限。而中子星合并事件产生的引力波的详细信息,或许能为我们揭开中子星结构的面纱。我们还将有机会知道,合并后是否会再形成一颗中子星,或是形成黑洞。

早有预兆

早在今年8月,LIGO观测到中子星合并引发的引力波的流言就已经流传开。德克萨斯大学奥斯汀分校的天文学家克雷格·惠勒(Craig Wheeler)8月18日在推特上写道:“LIGO上演新发现,发现存在光学对应体的引力波源。真是太棒了!”一个小时以后,西雅图华盛顿大学的天文学家彼得·约阿希姆(Peter Yoachim)在推特上发帖称LIGO探测到来自星系NGC 4993的光学对应体的信号。约阿希姆称:“源头是相互合并的两颗中子星”。

当然,即便这些天文学家提前透露了风声,但在对数据进行仔细分析、确定信号来源之前,LIGO官方显然不会发布观测结果。随后,惠勒还在推特上公开道歉:“不论对与错,我都不该发表那条推特。LIGO有权在其觉得合适的时间点宣布新发现。这是我的错。”

但从全球主要的天空望远镜在那段时间的观测情况中,人们很容易发现端倪。公开的记录表明,在可能存在引力波源的同一片区域,NASA的费米伽玛射线太空望远镜已经观测到了伽马射线。这在理论上与中子星合并形成的伽马辐射暴一致,但天文学家也提醒说,即使费米望远镜观测到了伽马射线暴,其精确度也不足以让我们辨认出来源。

随后,有人注意到NASA的钱德拉X射线天文台(Chandra X-ray observatory)也加入了观测。钱德拉天文台的网站有一份公开记录关于8月19日的观测,该记录表示望远镜指向NGC4993星系,并观测到一个编号为SGRB170817A的事件,该代号意为“2017年8月17日发生了一次短伽玛射线暴”。该记录的最醒目的部分是“触发条件”部分,解释了望远镜终止预先计划而转到该方向的原因。这份报告写道:“引力波的源头要么被LIGO探测到,要么被Virgo探测到,或者被二者均探测到。”

钱德拉X射线天文台

另外一些主要天文望远镜,包括位于欧洲南方天文台的甚大天文望远镜和阿卡塔玛大型毫米/亚毫米观测阵列(ALMA),都在8月18日和19日两天对NGC 4993星系进行了观测。

8月25日,LIGO-Virgo联合发布了更新:“经过我们的初步分析,在LIGO和Virgo的数据中我们确认了几个有希望的引力波信号候选,我们也将所知道的信息与合作伙伴共享。我们正在努力分析这些候选是否为确凿的引力波事件,我们也需要时间来评估其置信水平。我们会在消息确认后尽快向大家公开。”而现在,这一消息终于得到官方确认。

参考链接:

http://www.nature.com/news/rumours-swell-over-new-kind-of-gravitational-wave-sighting-1.22482

Neutron star smashup seen for first time, 'transforms' understanding of Universe

                     October 16, 2017                       by Marlowe Hood                                        
ESO telescopes observe first light from gravitational wave source
       This artist's impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO-Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe. Credit: ESO/L. Calçada/M. Kornmesser    

For the first time, scientists have witnessed the cataclysmic crash of two ultra-dense neutron stars in a galaxy far away, and concluded that such impacts forged at least half the gold in the Universe.

Shockwaves and light flashes from the collision travelled some 130 million light-years to be captured by Earthly detectors on August 17, excited teams revealed at press conferences held around the globe on Monday as a dozen related science papers were published in top academic journals.

"We witnessed history unfolding in front of our eyes: two neutron stars drawing closer, closer... turning faster and faster around each other, then colliding and scattering debris all over the place," co-discoverer Benoit Mours of France's CNRS research institute told AFP.

The groundbreaking observation solved a number of physics riddles and sent ripples of excitement through the scientific community.

Most jaw-dropping for many, the data finally revealed where much of the gold, platinum, uranium, mercury and other heavy elements in the Universe came from.

Telescopes saw evidence of newly-forged material in the fallout, the teams said—a source long suspected, now confirmed.

"It makes it quite clear that a significant fraction, maybe half, maybe more, of the heavy elements in the Universe are actually produced by this kind of collision," said physicist Patrick Sutton, a member of the US-based Laser Interferometer Gravitational-Wave Observatory (LIGO) which contributed to the find.

Neutron stars are the condensed, burnt-out cores that remain when massive stars run out of fuel, blow up, and die.

Typically about 20 kilometres (12 miles) in diameter, but with more mass than the Sun, they are highly radioactive and ultra-dense—a handful of material from one weighs as much as Mount Everest.

Discovered! Neutron star collision seen for the first time
       An image of Swope Supernova Survey 2017a (or SSS17a) from the night of discovery. On August 17, a team of four Carnegie astronomers provided the first-ever glimpse of two neutron stars colliding, opening the door to a new era of astronomy. Credit: Tony Piro.    

'Too beautiful'

It had been theorised that mergers of two such exotic bodies would create ripples in the fabric of space-time known as gravitational waves, as well as bright flashes of high-energy radiation called gamma ray bursts.

On August 17, detectors witnessed both phenomena, 1.7 seconds apart, coming from the same spot in the constellation of Hydra.

"It was clear to us within minutes that we had a binary neutron star detection," said David Shoemaker, another member of LIGO, which has detectors in Livingston, Louisiana and Hanford, Washington.


"The signals were much too beautiful to be anything but that," he told AFP.

The observation was the fruit of years of labour by thousands of scientists at more than 70 ground- and space-based observatories on all continents.

Along with LIGO, they include teams from Europe's Virgo gravitational wave detector in Italy, and a number of ground- and space-based telescopes including NASA's Hubble.

"This event marks a turning point in observational astronomy and will lead to a treasure trove of scientific results," said Bangalore Sathyaprakash from Cardiff University's School of Physics and Astronomy, recalling "the most exciting of my scientific life."

"It is tremendously exciting to experience a rare event that transforms our understanding of the workings of the Universe," added France Cordova, director of the National Science Foundation which funds LIGO.

The detection is another feather in the cap for German physicist Albert Einstein, who first predicted gravitational waves more than 100 years ago.

First observations of merging neutron stars mark a new era in astronomy
       The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. Credit: Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley    

Something 'fundamental'

Three LIGO pioneers, Barry Barish, Kip Thorne and Rainer Weiss, were awarded the Nobel Physics Prize this month for the observation of gravitational waves, without which the latest discovery would not have been possible.

The ripples have been observed four times before now—the first time by LIGO in September 2015. All four were from mergers of black holes, which are even more violent than neutron star crashes, but emit no light.

The fifth and latest detection was accompanied by a gamma ray burst which scientists said came from nearer in the Universe and was less bright than expected.

"What this event is telling us is that there may be many more of these short gamma ray bursts going off nearby in the Universe than we expected," Sutton said—an exciting prospect for scientists hoping to uncover further secrets of the Universe.

Among other things, it is hoped that data from neutron star collisions will allow the definitive calculation of the rate at which the cosmos is expanding, which in turn will tell us how old it is and how much matter it contains.

"With these observations we are not just learning what happens when neutron stars collide, we're also learning something fundamental about the nature of the Universe," said Julie McEnery of the Fermi gamma ray space telescope project.

Neutron star smash-up the 'discovery of a lifetime'

"Truly a eureka moment", "Everything I ever hoped for", "A dream come true"—Normally restrained scientists reached for the stars Monday to describe the feelings that accompany a "once-in-a-lifetime" event.

The trigger for this meteor shower of superlatives was the smash-up of two unimaginably dense 130 million years ago, when T-rex still lorded over our planet.

Evidence of this cosmic clash hurtled through space and reached Earth on August 17 at exactly 12:41 GMT, setting in motion a secret, sleepless, weeks-long blitzkrieg of star-gazing and number-crunching involving hundreds of telescopes and thousands of astronomers and astrophysicists around the world.

It was as if a dormant network of super-spies simultaneously sprung into action.  

The stellar smash-up made itself known in two ways: it created ripples called gravitational waves in Einstein's time-space continuum, and lit up the entire electromagnetic spectrum of light, from gamma rays to radio waves.

Scientists had detected gravitational waves four times before, a feat acknowledged with a Nobel Physics Prize earlier this month.

But each of those events, generated by the collision of black holes, lasted just a few seconds, and remained invisible to Earth- and space-based telescopes.

The neutron star collision was different.

It generated —picked up by two US-based observatories known as LIGO, and another one in Italy called Virgo—that lasted an astounding 100 seconds. Less than two seconds later, a NASA satellite recorded a burst of .  

Discovered! Neutron star collision seen for the first time
       Artist's concept of the explosive collision of two neutron stars. Credit: Robin Dienel courtesy of the Carnegie Institution for Science.    

A true 'eureka' moment

This set off a mad dash to locate what was almost certainly the single source for both.

"It is the first time that we've observed a cataclysmic astrophysical event in both gravitational and electromagnetic waves," said LIGO executive director David Reitze, a professor at the California Institute of Technology (Caltech) in Pasadena

Initial calculations had narrowed the zone to a patch of sky in the southern hemisphere spanning five or six galaxies, but frustrated astronomers had to wait for nightfall to continue the search.

Finally, at around 2200 GMT, a telescope array in the northern desert of Chile nailed it: the stellar merger had taken place in a galaxy known as NGC 4993.

Stephen Smartt, who led observations for the European Space Observatory's New Technology Telescope, was gobsmacked when the spectrum lit up his screens. "I had never seen anything like it," he recalled.

Scientists everywhere were stunned.

"This event was truly a eureka moment," said Bangalore Sathyaprakash, head of the Gravitational Physics Group at Cardiff University. "The 12 hours that followed are inarguably the most exciting of my scientific life."

"There are rare occasions when a scientist has the chance to witness a new era at its beginning—this is one such time," said Elena Pian, an astronomer at the National Institute for Astrophysics in Rome.

LIGO-affiliated astronomers at Caltech had spent decades preparing for the off chance—calculated at 80,000-to-one odds—of witnessing a neutron star merger.

Don't tell your friends

"On that morning, all of our dreams came true," said Alan Weinstein, head of astrophysical data analysis for LIGO at Caltech.

"This discovery was everything I always hoped for, packed into a single event," added Francesco Pannarale, an astrophysicist at Cardiff University in Wales.

For these and thousands of other scientists, GW170817—the neutron star burst's tag—will become a "do you remember where you were?" kind of moment.

"I was sitting in my dentist's chair when I got the text message," said Benoit Mours, an astrophysicist at France's National Centre for Research and the French coordinator for Virgo. "I jumped up and rushed to my lab."

Patrick Sutton, head of the gravitational physics group at Cardiff and a member of the LIGO team, was stuck on a long-haul bus, struggling to download hundreds of emails crowding his inbox.

Discovered! Neutron star collision seen for the first time
       A comparison of images of Swope Supernova Survey 2017a (or SSS17a) from the night of discovery, August 17, and four nights later, August 21. Credit: Tony Piro.    

Rumours swirled within and beyond the astronomy community as scientists hastened to prepare initial findings for publication Monday in a dozen articles spread across several of the world's leading journals.

"There have been quite a few pints and glasses of wine or bubbly—privately, of course, because we haven't been allowed to tell anyone," Sutton told AFP.

But he couldn't resist telling his 12-year-old son, an aspiring physicist.

"He's sworn to secrecy though. He's not allowed to tell his friends."

LIGO and Virgo: The machines that unlock the universe's mysteries

The three machines that gave scientists their first-ever glimpse of gravitational waves resulting from a collision of neutron stars are the most advanced detectors ever built for sensing tiny vibrations in the universe.

The LIGO and Virgo detectors have previously picked up the "chirp" of black holes merging in the distant universe, sending out ripples in the fabric of space and time.

The detection of these gravitational waves for the first time in 2015 confirmed Albert Einstein's century old theory of general relativity.

The two US-based underground detectors are known as the Laser Interferometer Gravitational-wave Observatory, or LIGO for short.

One is located in Hanford, Washington; the other 1,800 miles (3,000 kilometers) away in Livingston, Louisiana.

Construction began in 1999, and observations were taken from 2001 to 2007.

Then they underwent a major upgrade to make them 10 times more powerful.

The advanced LIGO detectors became fully operational for the first time in September 2015.

On September 14, 2015, the detector in Louisiana first picked up the signal of a gravitational wave, originating 1.3 billion years ago in the southern sky.

Virgo

The third underground detector is near Pisa, Italy, and is known as Virgo.

Built a quarter century ago by a French-Italian partnership, the Virgo detector ended its initial round of observations in 2011 and then underwent an upgrade.

Advanced Virgo came online in April of this year, and made its first observation of gravitational waves on August 14, marking the fourth such event that scientists have observed since 2015.

Virgo is less sensitive than LIGO, but having three detectors helps scientists zero in on the area of the universe where a cosmic event is happening, and measure the distance with greater accuracy.

"A smaller search area enables follow-up observations with telescopes and satellites for cosmic events that produce gravitational waves and emissions of light, such as the collision of neutron stars," said Georgia Tech professor Laura Cadonati.

How they work

These huge laser interferometers—each about 2.5 miles (four kilometers) long—are buried beneath the ground to allow the most precise measurements.

The L-shaped instruments track gravitational waves using the physics of laser light and space.

They do not rely on light in the skies like a telescope does.

Rather, they sense the vibrations in space, an advantage which allows them to uncover the properties of black holes and neutron stars.

"As a gravitational wave propagates through space it stretches space-time," explained David Shoemaker, leader of the Advanced LIGO project at the Massachusetts Institute of Technology (MIT).

The detector, in short, "is just a big device for changing strain in space into an electrical signal."

One way to imagine the curvature of space and time is to imagine a ball falling on a trampoline.

The trampoline bows downward first, stretching the fabric vertically and shortening the sides.

Then as the ball bounces upward again, the horizontal movement of the fabric expands again.

The instrument acts like a transducer, changing that strain into changes in light—and then into an electronic signal so scientists can digitize it and analyze it.

"The light from the laser has to travel in a vacuum so that it is not disturbed by all the air fluctuations," said Shoemaker, noting that LIGO contains the "biggest high vacuum system in the world,"—measuring 1.2 meters (yards) by 2.5 miles (four kilometers) long.

The detectors contain two very long arms that contain optical instruments for bending light, and are positioned like the letter L.

If one arm shortens, and the other lengthens, scientists know they are seeing a gravitational wave.

Read more:What are neutron stars?

Read more:Gravitational waves: Why the fuss?

Explore further:LIGO and Virgo observatories detect gravitational wave signals from black hole collision



https://blog.sciencenet.cn/blog-212210-1081177.html

上一篇:神奇蘑菇可能“重置”抑郁患者的大脑
下一篇:鲸鱼和海豚有丰富的类似于人类的文化和社会关系吗?
收藏 IP: 61.134.23.*| 热度|

2 王庆浩 魏焱明

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-4 11:47

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部