TickingClock的个人博客分享 http://blog.sciencenet.cn/u/TickingClock

博文

PNAS:拟南芥营养期转变过程中茎尖分生组织的作用

已有 5284 次阅读 2019-4-28 16:58 |个人分类:每日摘要|系统分类:论文交流

Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis


First author: Jim P. Fouracre; Affiliations: University of Pennsylvania (宾夕法尼亚大学): Pennsylvania, USA

Corresponding author: R. Scott Poethig


The extent to which the shoot apical meristem (SAM) controls developmental decisions, rather than interpreting them, is a longstanding issue in plant development. Previous work suggests that vegetative phase change is regulated by signals intrinsic and extrinsic to the SAM, but the relative importance of these signals for this process is unknown. We investigated this question by examining the effect of meristem-deficient mutations on vegetative phase change and on the expression of key regulators of this process, miR156 and its targets, SPL transcription factors. We found that the precocious phenotypes of meristem-deficient mutants are a consequence of reduced miR156 accumulation. Tissue-specific manipulation of miR156 levels revealed that the SAM functions as an essential pool of miR156 early in shoot development, but that its effect on leaf identity declines with age. We also found that SPL genes control meristem size by repressing WUSCHEL expression via a novel genetic pathway.




有关植物茎尖分生组织在关键发育决策方面是起到控制作用,还是仅起到诠释作用是植物发育学中一个长期存在的问题。先前的研究显示植物营养期转变同时受到SAM内部和外部信号的调控,但这些信号对于该过程的相对重要性还不清楚。本文,作者研究了分生组织缺陷突变体对于营养期转变的影响以及对于该过程关键调控基因,即miR156与其靶基因SPL转录因子的影响。作者发现分生组织缺陷突变体中miR156积累的减少导致了该突变体的早熟表型。组织特异性修改miR156水平试验显示SAM在早期茎尖发育时作为miR156的“来源池”发挥作用,但其对于叶片特征的影响随着时间逐渐减弱。作者还发现SPL基因通过一个新的遗传通路抑制WUSCHEL的表达来控制分生组织的大小。



Background


早在1889年,Goebel [1]就发现了在植物进入生殖生长之前会经历幼年起向成年期的转变(juvenile-to-adult transition),该过程又叫做营养期转变(vegetative phase change, VPC)。Poethig [2]总结了不同的植物物种在经历VPC时会有不同程度的改变,包括叶片大小和形状、两个相邻叶原基形成的间隔时间、茎尖生理特征、不定根的形成、疾病抗性以及生殖能力。在模式植物拟南芥中,从幼年期向成年期的转变与大的、匙形的锯齿叶片形成相关,这些叶片会在背轴面形成毛状体(trichomes)。而幼年期的叶片通常比较小、呈环形,且边缘光滑无锯齿,背轴面也无毛状体。


在拟南芥以及其它有报道的有花植物中,miR156是调控VPC的主要参与者 [2]。miR156的表达在茎尖成熟时会短暂的下调,从而使得其靶基因SPL家族能够上调表达 [3-5]。在拟南芥中,大概有10个SPL基因是miR156的靶基因,这些SPLs能够促进拟南芥的成年期生长,但不同的SPLs具有不同程度的作用,其中以SPL9SPL13SPL15为最 [6]。miR156和部分功能冗余的miR157同样存在多个基因家族成员,其中MIR156AMIR156CMIR157AMIR157C是拟南芥幼年期生长时期起抑制SPL活性的主要基因 [7]。


miR156和SPL9/13/15均在茎尖分生组织SAM和幼年叶原基的茎尖中表达 [6]。有关miR156表达如何在植株营养期转变时表达减弱的分子调控机制在近几年已经有了很大的进展 [8-13],然而miR156-SPL通路的表达与VPC的发育是如何在茎尖中协调的还不清楚。长期以来广泛都认为茎尖的特性是由SAM的成熟状态所决定的 [14, 15]。在wuschelpaused等分生组织减弱的突变体中,很快就长出了具有成年期性状的叶片,这些结果进一步支持了SAM的作用 [16, 17]。然而,叶片切除试验显示来自植株本身的幼年期叶片的信号能够促进成年期叶片的形成 [18-20]。这些结果明显存在相互矛盾:如果幼年期叶片对于起始植株的成年生长是必要的,那么为何wuspsd突变体能够立刻长出成年期的叶片?本文的作者试图通过分析分生组织状态的改变对于miR156-SPL通路的影响来探索这一问题。本文的研究结果揭示wus突变体的表型是由于miR156表达量的降低所导致的,并且无论是在wus突变体,还是在发育正常的分生组织的SAM中,miR156的表达均能够影响叶片特征。作者进一步显示WUS基因的表达受到SPL基因的反馈调节。


Reference

1. Goebel K (1889) über die Jugendzustände der Pflanzen [On the state of juvenility in plants]. Flora 72:1–45.

2. Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125–152.

3. Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thalianaPlant Cell 20:1231–1243.

4. Wu G, et al. (2009) The sequential action of miR156 and miR172 regulates developmental timing in ArabidopsisCell 138:750–759.

5. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3Development 133:3539–3547.

6. Xu M, et al. (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thalianaPLoS Genet 12: e1006263.

7. He J, et al. (2018) Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thalianaPLoS Genet 14:e1007337.

8. Xu M, Hu T, Smith MR, Poethig RS (2016) Epigenetic regulation of vegetative phase change in ArabidopsisPlant Cell 28:28–41.

9. Xu M, Leichty AR, Hu T, Poethig RS (2018) H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3. Development145:dev152868.

10. Choi K, et al. (2016) Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex. Plant Physiol 171:1128–1143.

11. Xu Y, et al. (2016) Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA.Plant Physiol 172:2416–2428.

12. Picó S, Ortiz-Marchena MI, Merini W, Calonje M (2015) Deciphering the role of Polycomb Repressive Complex 1 (PRC1) variants in regulating the acquisition of flowering competence in Arabidopsis. Plant Physiol 168:1286–1297.

13. Wang F, Perry SE (2013) Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264.

14. Wardlaw CW (1965) The morphogenetic role of apical meristems: Fundamental aspects (illustrated by means of the shoot apical meristem). Differentiation and Development/Differenzierung und Entwicklung: Part 1/Teil 1, ed Ruhland W (Springer, Berlin/Heidelberg), pp 443–451.

15. Wareing PF (1987) Juvenility and cell determination. Manipulation of Flowering,ed Atherton JG (Butterworths, London), pp 83–92.

16. Hamada S, et al. (2000) Mutations in the WUSCHEL gene of Arabidopsis thaliana result in the development of shoots without juvenile leaves. Plant J 24:91–101.

17. Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thalianaDevelopment 124:645–654.



通讯R. Scott Poethighttps://www.bio.upenn.edu/people/scott-poethig


个人简介:1974年,伍斯特学院,学士;1976年,耶鲁大学,硕士;1981年,耶鲁大学,博士。


研究方向:植物从幼年到成年的转变,又叫营养期转变(vegetative phase change)。



doi: https://doi.org/10.1073/pnas.1817853116


Journal: PNAS

First Published: April 25, 2019




https://blog.sciencenet.cn/blog-3158122-1175992.html

上一篇:Genome Biology:驯化植物全基因碱基演化模式及潜在分子机理
下一篇:Nature Communications:水稻OsGluA2的自然变异作用于籽粒蛋白含量调控
收藏 IP: 128.199.63.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-23 13:21

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部