twhlw的个人博客分享 http://blog.sciencenet.cn/u/twhlw

博文

基于人机环境系统工程的智慧企业建设思考

已有 2000 次阅读 2020-5-9 22:38 |个人分类:2020|系统分类:科研笔记

​人、机制、环境是解开智慧企业的一把钥匙,建议是:要找对人,建立良好的管理机制,选择良好的产业环境。

未来的智慧企业发展将以人机融合、智能的贴合度、混合的密切程度来衡量,它主要表现在主动推荐、交互学习、高效容错和混合决策方面。

人机融合智能的未来是共生,即“人的智慧+机的智能”;人机交互的本质是共在,即“人的生理+机的物理”,深度态势感知是人机融合智能的核心。

就好像爱因斯坦通过概念转换打破了空间与时间的区别一样,我们需要用概念转换来打破心智的与物理的二者间的分歧。感知相对性是把事实与价值对立统一的一把利剑和一座桥梁。

智慧企业的本质就是“专业的人+良好的设备和管理机制+产业环境融合”,真正发挥各方面的作用和绩效,进而大幅度地提升行业效益。对于人机融合对未来产业互联网作用,人机共融可以实现未来产业互联网的“精准感知+深度画像+自然交互+协同感知+计算算计”。

一是要找对人,要找到复合型的人或复合型的团队,除此之外,要有一项技能特别强,一技绝胜,把对手甩在后面,未来颠覆性创新在复合型人才或者边缘的交叉上。

二是要产生正确的机制,不但要有好的机器产品和系统,还需要有良好的管理机制,这个机制对保障整个团队的运行和系统稳定的可靠性很有帮助。

三是好的环境,有无良好的上下游环境和发展空间等。

一个没有情感的组织是不可能实现智慧化并实现其目标的……无论一开始表面上显得多么强大!———《有限的理性》

14f7672ee8804978a28f86af35348eb7.jpg

以下为演讲实录,猎云网整理删改:

刘伟:非常荣幸来这儿跟大家一块探讨人机融合这个话题。现在人工智能已经发展到一个非常热的程度,人工智能下一步应该怎么走?今天分享这个话题的同时,我也提出一些个人看法,因为人工智能发展的趋势促使很多产业飞速进步,同时也带来一些问题,这些问题怎么克服呢?

今天我给大家演讲的题目主要侧重于技术,主要从人机融合的视角出发,看未来智能产业的发展。未来的产业发展,我认为有两个很突出的特点:第一个是传输,5G时代已经到来,相比以前4G、3G,这个时代的到来将会引起信通革命性的变化。而人工智能现在也走入一个新的时代,这个时代将从以前关于算法的、数据的和算力的,走向了与人结合、与用户结合、与设计师进行结合、与体验进行结合,这个结合将会影响整个未来人工智能领域的发展。

以前人工智能有三大领域,这是三个最有代表性的人工智能的系统或平台。

第一个是1997年打败卡斯帕罗夫的深蓝系统。当时它赢得了一片赞赏,为什么会赢得那么大的振动?因为在人类历史上第一次出现了机器比人类更强大的一个概念,这个概念的引入使大家有兴奋也有担忧,这个担忧实际上卡斯帕罗夫用他的实验来验证是多余的,为什么多余?很多专家做过类似的案例分析,我在这里不再赘述。

卡斯帕罗夫下来以后,他与另外一台计算机一起,和深蓝又进行了博弈。在博弈过程中,卡斯帕罗夫认为他和一台机器结合在一起,还不如他一个人和深蓝进行博弈,1+1没有大于1,而是1+1小于1。这个现象给大家一个错觉,原以为人和机器结合在一起形成比人更强大的力量,结果适得其反,尤其是在智力上,在生理上。汽车、飞机这些传统运输工具已经把人的体力进行了革命,但是在智力上却没有做到类似的工作。

第二个是沃森。这个系统是IBM开发的又一个非常厉害的人工智能产品,但这个产品只能对固定式、确定式的问题进行快速、准确、大容量的搜索和回答,对主观性、描述性问题往往回答得不是太好。因为人类对这两个“How”和“Why”没有很好地回答,机器代替人类,目前看来还是比较遥远的梦想,这个梦想在智能医疗上进行了验证,现在IBM在医疗上做得不是太理想。

第三个是阿尔法狗。它分别在围棋和游戏当中取得了令人瞩目之成绩,但是它们同样也存在着一个问题:计算和认知隔离,只有计算没有认知。通过这三个系统和产品,我们可以看出目前人工智能发展存在的主要缺点及不足。

我们认为,未来的趋势是人和机器进行融合的时代,这个时代分为以下几个部分:深度开发人类的潜能,比如说人的洞察意识,人的认知;第二个是要把机器的计算和人的配合结合在一起,不是为了快,不是为了精确,不是为了更大的精确容量而进行评比,而是为了更好地与人结合。我希望在座的企业家、投资人和用户一定要关注这个,因为你的产品再高档、再牛,如果没有黏性,再好的人工智能产品也就是一个广告,也就是一个阿尔法狗,阿尔法狗就是一个大广告,因为它不实用、不落地。所以,未来的人工智能发展将以人机融合、智能的贴合度、混合的密切程度来衡量。它主要表现在几个方面:

第一,主动推荐。未来的产品一定要有主动性,什么叫主动,什么叫自主?这个概念我问了很多人,很多人都回答不了。其实这个问题非常抽象,自主和主动这种产品一定包含心理学,甚至包含哲学。比如,主动包括了记忆,但存储不是,存储是精密的,记忆是抓特征的,它包括了期望、匹配、选择、控制等一系列模块。所以主动系统非常复杂,目前我们碰到的系统里边能做到主动的非常少,因为在咱们的团队里边大部分都是理工科,刚才我听了一下,说是博士多少人,我给大家说,刚才我说的那三个系统,深蓝、阿尔法狗还有阿尔法星还有IBM的沃森,他们的团队里面有大量的复合型人才,阿尔法之父是剑桥大学计算机系的研究生,他特别喜欢围棋和国际象棋,而且对经营管理和商业有浓厚的兴趣,他是非常复合的人才。在这些好的系统里面一定要有复合型人才的参与,而不仅仅是博士、硕士,而不仅仅是海归,如果没有复合型人才,大家要小心。

第二,交互学习。这个复合程度如何有机结合在一起,表现在一个很重要的特点就是交互的学习。一个系统如果没有非常好的学习性,只是人类的学习性,而不是机器的学习性,因为现在大家看很多学习,动不动是机器学习,循环神经网络之类,大家注意,那是个隐喻,并不是真正的学习。人类的学习和机器学习最大的不同,人类学习能够产生一个范围不确定的隐性的知识和秩序,这个东西机器学不来的,这种隐性的东西造成意料之外的事情。比如一些孩子的成长过程中,今天学了一个概念,他们会在你意想不到的地方使用这种概念,机器做不到,机器很难形成隐性的知识。

第三,高效容错。这个能力是人与人之间打交道时天然具有的一种能力,而机器恰恰就非常欠缺这种人机容错的能力,它非常的规则、非常的概率、非常的统计,但是它很少容错。这就造成人机之间的大范围或深度的割裂。所以说,现在人机交互最好的产品是什么?就是它,目前在这个星球上人机交互最好的一个案例——手机。你用手机的时候,从来不会和它过不去,所以很多大型的人工智能,它的切合度非常差。

第四,混合决策。在所有的人机融合过程中,混合决策里边有很重要的特点,就是人带有责任性、带有风险性,机器没有,机器没有任何的责任、没有任何的风险,它决策的结果敢不敢用还是由人来定。所以这四方面造成人机融合里边非常大的困难。大家在选择好的项目、好的产品、好的系统的时候,也要考虑这四个方面。

我们对人机结合有三个认识:第一个认识是人机交互,第二个是人机融合,第三个深度测试感知。人机交互很简单,就是脖子(图)以下,人的生理和机器的物理进行结合,包括可达域、视域、听域,这种就叫做人机交互。对于脖子以上,人的大脑和机器的电脑进行融合的时候叫做人机融合,人机智能融合。目前最差的是人机智能融合,而研究人机智能融合的切入点实验室在做深度态势感知。

刚才几位嘉宾在谈整个投资形势和行业结合的时候,有一位嘉宾提到了态势,大家注意,态势感知非常重要,有了视感、有了态感,能够感、能够知,这个事情就好办了。我们把深度测试感知分成了五大块:第一是深度,第二是态空间,状态空间,第三个是趋势,第四个是感觉,第五个是知觉。它是人机融合的切入点,它涉及的范围非常广,不但涉及到数理和物理,而且涉及到管理、生理和心理,以及像法理等等这些环节,它是一个复合型的概念。

目前我们深度测试感知了一下当前的人工智能发展,我们做了一个小小的比喻,可能不是很恰当:第一,计算智能,目前认为现在的计算智能就像第一个图叫做刻舟求剑,试图用过去的数据来描绘未来,这是很可怕的一个陷阱。第二,感知智能,我们比喻成盲人摸象,只知一点,不知全局。第三,认知智能,我们叫做朝中丞相,简单的切换,没有产生更厉害的,大家期望得到的东西。第四,塞翁失马,一个项目经理能够产生塞翁失马的洞察力,能不成吗?这是我们给大家的建议。

人机融合对未来产业的影响,我给大家做一个简单的展望。

第一,关于5G它的发展,更大的带宽、更快的速度、更低的延时以及更高的可靠性,它的本质就是在人机融合里面,把人、机和环境变成一个大系统来看。人、机、环更重要的是人,什么样的人,包括设计师、用户、管理者、投资者都是人。机包括两块,一个是你的系统或产品,第二个是机制、机理,机制是管理科学,机理是科学方面。第三个是环境,包括自然环境、社会环境以及团队的协同环境,任务环境、目标环境,这些都是环境。所以人、机、环是解开人机融合的一把重要的钥匙。

人机共融可以实现未来的产业互联,它主要体现在以下这几个方面:第一,精准的感知,第二,深刻的画像,第三,自然的交互,协同的感知和计算算机的融合,包括5G结合在一起实现更快、更高、更强。

人机融合的布局将会影响整个社会的发展,从人的饮食起居到国民经济,这是一个非常重要的领域,在这个领域里面,我们对To B创业的建议有三块:一是要找对人,要找到复合型的人或复合型的团队,除此之外,还要有一项特别强,在某一个单项方面一技绝胜,把对手甩得远远的,未来颠覆性创新在复合型人才或者边缘的交叉上。二是要产生正确的机制,不但要有好的机器产品和系统,还要有良好的管理机制,这个机制对保障整个团队的运行和系统的稳定性、可靠性非常有帮助。三是好的环境,有无良好的上下游环境和发展空间等。

在这儿给大家强调一点,现在技术和资本的矛盾愈演愈烈,周围有很多朋友抱着非常好的技术,不敢让他们(猎云网注:指资本)参与。我问过他们,他们说怕被“绑架”,不知道大家理解不理解?资本希望短期内有回报,但是这种迫切性往往是很多技术不敢主动出击,不敢积极地容纳。同样,一些好的产品和技术需要链,需要资金链、物质链、供应链,更重要的是需要认知链。一定要有认知链,关键核心的东西是塞翁失马这个洞察,你得透过表面现象看本质,有这个能力再下手,可能更准确、更可靠、更稳定。如果养成不了这种习惯的话,对于很好的技术,在你眼里很可能就是一块石头,它不是一块玉。所以通过我个人的一些体验或者一些感觉,我提出一个想法,大家一定要洞察,除了计算、算计和感知、认知以外,更重要的是形成洞察,形成洞察以后会产生意想不到的结果。

另外,还有一个现象,在人机融合里面,其实人更多做一些正确的事儿,把握方向,它更关注势,把握趋势。机器要正确地做事儿,它关注态,状态空间,能够算得快、算得准。而人把握方向,有点像老婆和老公的关系,老婆在家里一定要把握方向,老公好好干活,这是对人机融合的一个肤浅的理解。

报告视频网址:http://k.cnki.net/CInfo/Index/4388

 mmexport1565970688761.jpg



https://blog.sciencenet.cn/blog-40841-1232445.html

上一篇:“忠诚僚机”不应该“忠诚”
下一篇:马斯克、脑机交互与人机融合
收藏 IP: 124.64.125.*| 热度|

1 郑永军

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 03:47

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部