Figure 1. Light-off curves (a) and durability at 300 oC (b) for DCM oxidation (1,000 mg/m3), IR spectra (c), TG/DTA curves (d), TEM images (e-h) and XRD patterns (i) ofRu-CeO2 andHxPO4/Ru-CeO2nanoparticles calcined at different temperatures. 在作者之前的工作中, HxPO4表面改性的Ru-CeO2催化剂由于其高化学稳定性和选择性,特别是对于磷酸盐含量和前驱体的优化,被认为有望应用于Cl-VOCs的催化氧化。然而,其整体性能仍有改进的空间,例如,由于暴露的金属位点或界面的不足,其对具有高稳定性的轻质烷烃的氧化催化活性较低。此外,可能的高温对B酸位点存在潜在的威胁,因为其可能转化为表面CePO4,这将抑制催化活性甚至促进了多氯代副产物的产生。图 1a、b 显示了在不同温度下焙烧的 Ru-CeO2和 HxPO4 /Ru-CeO2用于 DCM 氧化的活性和稳定性。令人欣慰的是,HxPO4表面改性催化剂即使在 850°C时效仍能完全抑制多氯副产物,而即使仅在 650°C下老化焙烧的 Ru-CeO2却明显促进了 CHCl3的形成。FT-IR、TG、TEM 和 XRD 等一系列表征(如图1 c-i 所示)表明,热失活归因于形成的CePO4的表面包覆和CeO2的自身烧结。此外,所有催化剂在 300°C下都表现出稳定的 DCM 转化,这也表明 RuOx对 CeO2反应稳定性的增强仍然有效,即使是高温老化,但 RuOx的烧结或迁移可能是老化后的 Ru-CeO2上CHCl3增加的原因之一。总之,这些后续研究表明, HxPO4/Ru-CeO2在高温下的活性下降更多是由于CeO2的烧结和表面CePO4的形成。更重要的是,研究发现对多氯代副产物的抑制不仅仅取决于 P-OH 的B酸位,而CePO4也可能存在潜在的作用。
Figure 2. Durability and CHCl3selectivity of fresh and aged Ru/Pi-CeO2 with different phosphate contents(a) and the referenced catalysts (b and c, Figure 2c inset: schematic diagram of Ru/Pi-CeO2) for catalytic oxidation of DCM (4,000 mg/m3) at 250 oC.鉴于上述结果,作者设计了Ru/Pi-CeO2纳米片(其中Pi表示CePO4)来研究CePO4对DCM催化氧化的影响。具体而言,制备了磷酸盐掺杂的CeO2纳米片(CePO4嵌入或分散到块状CeO2中,即CePO4-in-CeO2,见图2c),然后将RuOx负载在其表面上以暴露更多的金属和界面活性位点。图2显示了新鲜和老化的 Ru/Pi-CeO2的耐久性和 CHCl3选择性。用不同的磷酸盐含量在 250°C 下催化氧化 DCM (4000 mg/m3),磷酸盐的适度掺杂提高了 DCM 氧化的稳定转化率,在 250 °C 下,所有磷酸盐掺杂的催化剂都实现了约65% 的转化率(在 Ru/CeO2纳米片上约为 55%,图2b)。掺杂的磷酸盐含量的影响实际上可以忽略不计;然而,初始活性随着磷酸盐的增加而下降,尤其是在 Pi/Ce 的摩尔百分比超过50%之后。对于老化的 Ru/Pi-CeO2在 650 °C 时观察到 DCM 转化率存在明显差异,Ru/Pi15Ce-650 呈现出最高的 DCM 稳定转化率(约 45%)。更重要的是,磷酸盐的掺杂完全抑制了多氯副产物的形成,即使在高温老化的催化剂上也是如此。相比之下,除了较低的稳定转化率外,Ru/-CeO2催化剂如 Ru/CeO2纳米片 (Ru/Ce) 和 Ru-CeO2纳米颗粒 (RuCe) 表现出相当多的多氯副产物,其CHCl3的选择性在20-30% 范围内(图 2 b、c);HxPO4表面改性的 Ru-CeO2纳米粒子也表现出对多氯代副产物的抑制和更高的稳定转化率(但明显低于 Ru/Pi15Ce 和 Ru/Ce 纳米片催化剂)。此外,Ru-CeO2纳米颗粒比Ru/CeO2纳米片更容易受到热失活的影响。
Figure 3. Catalytic oxidation of DCM (4,000 mg/m3) over Ru/CeO2, Ru/Co3O4, Ru/Pi-Co3O4 andRu/Aox-CeO2 (A = P, S, V, Nb, Mo and W)(a and b), Ru/Pi-CeO2 with different Ru content (c), durability of fresh or aged Ru/Pi-CeO2 at 300 oC (d).显然,CePO4的引入可以提高CeO2基催化剂的耐久性、选择性和热稳定性,而HxPO4作为B酸位点的表面改性不是必需的。为了进一步理解这一结果,掺杂其他可能形成铈络合物的 S、V、Mo、Nb 和 W 含氧阴离子物质,如硫酸铈、钒酸盐、钼酸盐、铌酸盐或钨酸盐(即稀土含氧盐),研究了Ru/AOx-CeO2 (A = P, S, V, Nb, Mo或W, A/Ce的摩尔百分比为15%)的催化剂对DCM的氧化性能,结果表明除了硫酸根的引入没有起到抑制作用外(可能由于硫酸根溶解度高,未能实现掺杂),其他均表现出预期效果。众所周知,Co3O4基催化剂对Cl-VOCs的催化氧化效率很高,但大量多氯副产物的产生极大地限制了其应用。在这里,也使用碳酸氢铵和磷酸铵作为共沉淀剂制备磷酸盐掺杂的Co基催化剂,然后在Ru/Co3O4和 Ru/Pi-Co3O4上评估了DCM的催化氧化。结果表明,磷酸盐(磷酸钴)的掺杂完全抑制了多氯代副产物;不幸的是,催化活性严重下降,需要进一步优化(如磷酸盐含量及其掺杂方法)。因此,氧阴离子的掺杂被确立为一种有效且通用的策略,可防止在催化氧化 Cl-VOCs过程中形成多氯代副产物,磷酸盐因其可调节的酸度和良好的热稳定性而被认为更有前景。图 3c、d 进一步展示了新鲜和老化的 Ru/Pi-CeO 2的 Ru 含量和耐久性的影响。Ru的负载抑制了在CePO4 -CeO2催化剂(Pi-CeO2,图3b)上检测到的脱氯副产物如一氯甲烷(MCM)的形成。此外,与 Pi-CeO2纳米片和 HxPO4 /Ru-CeO2相比,Ru/Pi-CeO2纳米粒子由于暴露的多活性位点具有更高的活性、耐用性和热稳定性。
Figure 4. TPSR of DCM oxidation on Ru/Pi-CeO2 and Ru/CeO2(a), EPR spectra of radical adducts trapped by PBN toluene solution (0.075 M) (b), and effects of different salts on DCM oxidation activity and CHCl3selectivity of Ru/CeO2 (c and d).对于Cl-VOCs的催化燃烧,确定中间或最终氯物种,如氯自由基 (Cl•)、Cl –、HCl 和 Cl2是非常重要的,这可以为Cl-VOCs催化氧化的多氯副产物的形成机制和抑制策略提供进一步的见解。图4a所示的DCM氧化的程序升温表面反应(TPSR)证实了Ru/Pi-CeO2比Ru/CeO2更稳定且选择性更高;重要的是,Cl2在前者上产生更多,且更容易从催化剂表面去除,这是 Ru/Pi-CeO2优异稳定性的原因。一般来说,多氯副产物可以通过离子和自由基氯化两种途径形成,而自由基途径被认为是Ru-和CeO2基催化剂最主要的方式,因为它们具有优异的化学稳定性,而此途径中Cl•的产生至关重要。在这里,α-苯基-N-叔丁基硝酮(PBN)作为Cl•自旋捕获剂直接观察氯自由基的产生,PBN甲苯溶液捕获的自由基加合物的EPR光谱如图4所示。Ru/CeO2上出现了弱峰信号,但在Ru/Pi-CeO2上未检测到信号,这类似于氯自由基与 PBN 的典型自旋加合物。因此,氯自由基被CePO4捕获/淬灭或抑制Cl2的解离,这与阴离子特别是磷氧阴离子可以充当自由基清除剂的事实相吻合。为此,设计了一系列实验来进一步阐明磷酸根和氯自由基的作用。通过将Ru/CeO2纳米片(Ru/Ce)与无机铈盐(15%)如磷酸铈(CP)、硫酸铈(CS)或氯化铈(CC)机械混合制备了一些组合催化剂,并对其进行了研究。探究它们对DCM氧化和CHCl3选择性的影响。图4c 显示这些盐的添加降低了 Ru/CeO2纳米片的活性,顺序如下:Ru/Ce + CP < Ru/Ce + CS < Ru/Ce + CC。此外,在较低温度范围内仍然观察到明显的失活,而在Ru/Pi-CeO2上没有观察到,这证实了磷酸盐的掺杂提高了Ru/CeO2对DCM氧化的稳定性。更有意义的是,在 Ru/Ce + CP 和 Ru/Ce + CS 上明显抑制了 CHCl3的生成,但在 Ru/Ce + CC 上没有明显抑制,这表明使用物理混合的金属含氧酸盐阴离子和 Ru/CeO2之间的强接触该方法还可以捕获Cl•自由基并抑制多氯化合物的形成。众所周知,氯化钠 (SC) 对城市固体废物焚烧 (MSWI) 中二噁英的形成有显着贡献,在这里,研究了机械混合Ru/CeO2或Ru/Pi-CeO2与SC (15%)。除了预期的活性下降外,与 Ru/Ce + SC 相比,CHCl3的生成显着促进,选择性从 8.5% 增加到约18%,而在 Ru/PiCe+SC 上仅检测到 1.5% 的选择性,这表明即使在 NaCl 存在的情况下,Ru/Pi-CeO2也能有效抑制多氯代副产物,这对于从 MSWI 中氧化去除二恶英至关重要。
Figure 5. Catalytic oxidation of different chlorinated or brominated VOCs (4,000 mg/m3) (a), nitrogen-containing VOCs (1,500 ppm DMF, 60,000 ml/g∙h) (b), the gas mixture of light alkanes (500 ppm methane, 500 ppm ethane and 500 ppm propane) (c), long-chain alkanes (1,000 ppm n-hexane or 1,000 ppm decane) and CO (1,000 ppm) (d), and the gas mixture of different VOCs (1,000 mg/m3 DCM, 1,500 mg/m3 benzene and 1,500 mg/m3 ethyl acetate) (e) over Ru/Pi-CeO2.在实际的工业排放中,VOCs通常是多组分的,因此实用催化剂的广谱性至关重要。其它氯代或溴代 VOCs 的催化氧化,例如 1,2-二氯乙烷 (1,2-DCE)、间氯甲苯 (MCT)、氯丙烯 (CPE)、环氧氯丙烷 (ECH)、溴乙烷 (EtBr) 和N , N -二甲基甲酰胺 (DMF) 作为代表性的含氮 VOCs (NVOCs),烷烃包括轻烷烃(甲烷、乙烷和丙烷)和长链烷烃(正己烷和癸烷),以及在 Ru/Pi-CeO2上评估了CO的催化氧化性能,如图 5 a-d所示。T90 (表示 90% VOCs 被氧化的温度,图5a)如下:DCM(280)> MCT(275)> DCE(270)> CPE(205)> EtBr(190)> ECH(160),这表明 Ru/Pi-CeO2对不同的氯代或溴代 VOCs 具有高活性,但取决于 C-Cl 或 C-Br 键的解离能及其分子结构,如苯环,以及 C=C 和 C -O 键。同时,DMF(1500 ppm 和 60,000 mL/g·h DMF)在 250°C 之前也可以在 Ru/Pi-CeO2上完全氧化,但与 Ru/CeO2相比衰减很大(图5b);这可能归因于其弱氧化还原能力和更多的表面酸性。对于稳定烷烃的催化氧化,Ru/Pi-CeO2的催化活性随着碳链长度的增加而增加(图 5 c,d),丙烷在250°C时完全氧化(图 S7),甚至低于 200 °C 用于癸烷氧化。CO氧化(1000 ppm和15,000 mL/g·h)的T 90为215°C,这表明VOCs可以在低温下完全氧化成CO2。综上所述,Ru/Pi-CeO2对这些污染物的催化氧化表现出比先前报道的 HxPO4 /Ru-CeO2纳米粒子更好的性能。此外,多组分 VOCs 氧化(1000 mg/m3 DCM、1500 mg/m3苯和 1500 mg/m3乙酸乙酯,图 5 e)的耐久性测试进一步证实了 Ru/Pi-CeO2可以稳定地催化完全氧化在 300 °C 下对不同 VOCs 的影响,即使在 250 °C 下也没有观察到明显的失活。简而言之,Ru/Pi-CeO2是一种很有前途的 VOCs 催化氧化催化剂,尤其是 Cl-VOCs,表现出优异的活性、广谱性和选择性。
Figure 6. FTIR (a), XRD (b), Raman spectra (c), TEM images (d andf), FLSEM-EDS mapping (g-j) and HRTEM lattice fringes (k) of Ru/Pi-CeO2, Ru/CeO2 or Ru/CePi.
Figure 7. Py-DRFTIR (a and b), H2-TPR (c), NH3-TPD (d inset) and XPS spectra (d, e and f) of Ru/Pi-CeO2, Ru/CeO2 or Ru/CePi.通过FT-IR、XRD、Raman、FLSEM、EDS Mapping、HRTEM、Py-DRFTIR、H2-TPR 、NH3-TPD 和 XPS 技术对催化剂的织构性质、酸氧化还原性质和热稳定性进行了表征,结果显示在图 6和图7中。FT-IR光谱显示CePO4确实形成了,从 P-O弯曲振动和反对称变形振动带分别位于953和615cm-1的结果以及PO43-基团的不对称伸缩振动位于1050和1014 cm–1可以看出。在XRD和Raman图谱上均未观察到CePO4的相结构,表明形成的CePO4高度分散在CeO2或非晶态中。此外,老化的 Ru/Pi-CeO2在 650°C 仅呈现出微晶尺寸的轻微增加,并且基于 TEM 图像没有观察到可见的烧结(图 6 d,f),这明显不同于 HxPO4 /RuCeOx纳米粒子(图 1 e、f),也证实了 Ru/Pi-CeO2的出色热稳定性。FLSEM-EDS映射显示Ru和P的均匀分散,具有片状形态,HRTEM图像中清晰的晶格条纹(图6k)证实了d-间距为0.35 nm的CePO4的存在属于晶格单斜晶 CePO4的 (111) 面的边缘,除了可能的无定形或差结晶的 CePO4外(图6k,圆形区域),清晰的 CeO2 (111) 和 (200) 晶格条纹分别占主导地位,面间距分别为 0.31 和 0.27 nm。因此,单斜和无定形CePO4成功地均匀掺杂或高度分散到块状CeO2中纳米片,提高了CeO2的耐烧结性。