||
陈省身先生写过一篇科普小文章What Is Geometry?(Amer. Math. Monthly 97, 1990),大家可以找来看看,了解一下今天的几何是什么样子的。这儿只引用结论:
Contemporary geometry is thus a far cry from Euclid.To summarize, I would like to consider the following as the major developments in the history of geometry:
1) Axioms (Euclid);
2) Coordinates (Descartes, Fermat);
3) Calculus (Newton,Leibniz);
4) Groups (Klein, Lie);
5) Manifolds (Riemann);
6) Fiber bundles (Elie Cartan, Whitney).
Aproperty is geometric, if it does not deal directly with number or if it happens on a manifold, where the coordinates themselves have no meaning. Going to several variables, algebra and analysis have a tendency to be involved with geometry.
先生还顺便举了一个生物学的例子,即DNA结构的数学。将双螺旋看成两根互绕的曲线,于是出现3个拓扑特征参数:.连环数(Linking number),扭数(Twisting number)和超螺旋数或绕数(Writhing number),它们满足一个类似多面体欧拉公式的等式:
L = T + W
它也叫White公式,是James White在1969年发现的。(James H. White, Self-linking and the Gauss integral in higherdimensions, Amer. J. Math., 91, 1969. 693-728.)
将White公式用于DNA的生化过程,可能有点儿像将Euler公式用于地貌演化,复杂的过程都满足一定的拓扑关系。因为时空可能比动力学和因果律更基本,那么拓扑法则也许比能量守恒、动量守恒等定律更基本,只是暂时还没显露出来。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 13:29
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社