||
breedR包由法国人facundo munoz开发的,源于对林业遗传分析所用,现已用于动植物遗传分析。其内核也是基于REML理论,所用的编程语言基于Fortran,可做类似于ARSReml-R包的分析,遗憾的是,目前该程序包暂时未能用于多性状分析和基因组选择分析。
下文做一简单的示范。
程序包的安装:
if( !require(devtools) ) install.packages('devtools')
devtools::install_github('famuvie/breedR')
其它程序包的安装:
install.packages(c('tidyr','dplyr','ggplot2','GGally','knitr','viridis'))
简单示范:
data("douglas")
dat <- droplevels(subset(douglas, site == "s3")) # 目标数据
表型数据的图形
ggplot(dat, aes(x, y, fill = C13)) +
geom_raster(show_legend = FALSE) +
coord_fixed() +
scale_fill_viridis()
示范1 简单的区组设计模型
dat$fam <- factor(dat$mum) # 数据格式转换
h2.fml <- "4*G_3_3_1_1/(G_2_2_1_1+G_3_3_1_1+R_1_1)" # 遗传力计算
res.base <- remlf90(
fixed = C13 ~ orig,
random = ~ block + fam,
progsf90.options = paste("se_covar_function h2", h2.fml),
dat = dat)
运行结果如下:
> summary(res.base)
Linear Mixed Model with pedigree and spatial effects fit by AI-REMLF90 ver. 1.122
Data: dat
AIC BIC logLik
17987 18003 -8991
Parameters of special components:
Variance components:
Estimated variances S.E.
block 1087 387
fam 1774 604
Residual 19914 774
Estimate S.E.
h2 0.3095 0.1004
Fixed effects:
value s.e.
orig.pA 471.86 12.470
orig.pB 501.58 19.925
orig.pC 435.96 27.087
orig.pF 444.08 14.372
orig.pG 378.28 50.751
orig.pH 389.80 46.890
orig.pI 409.80 47.066
orig.pJ 416.98 46.660
orig.pK 445.68 46.509
随机效应值如下:
> ranef(res.base)
$block
value s.e.
1 22.237335 18.30979
2 5.424956 17.93340
3 -11.723889 20.26381
4 14.077191 18.96857
5 -35.876594 19.28160
6 20.279598 18.05373
7 11.840247 20.62507
8 11.613073 17.93919
......
$fam
value s.e.
1 9.390304 25.17861
2 -49.228936 24.44993
3 -10.615627 26.03407
4 46.583473 24.92353
5 -3.174557 26.03291
6 28.684198 25.44909
7 47.244867 27.39178
8 26.594792 25.18145
.......
残差图
coordinates(res.base) <- dat[, c('x', 'y')]
plot(res.base, 'residuals')
示范2 个体模型+区组设计
res.blk <- remlf90(
fixed = C13 ~ orig,
genetic = list(model = 'add_animal',
pedigree = dat[, c('self','dad','mum')],
id = 'self'),
spatial = list(model = 'blocks',
coord = dat[, c('x','y')],
id = "block"),
dat = dat)
运行结果如下:
> summary(res.blk)
Linear Mixed Model with pedigree and spatial effects fit by AI-REMLF90 ver. 1.122
Data: dat
AIC BIC logLik
17984 18000 -8989
Parameters of special components:
spatial: n.blocks: 34
Variance components:
Estimated variances S.E.
genetic 5477 1727
spatial 1107 391
Residual 16235 1384
Estimate S.E.
Heritability 0.2389 0.07069
Fixed effects:
value s.e.
orig.pA 466.96 14.430
orig.pB 493.67 20.055
orig.pC 435.60 25.267
orig.pF 444.01 13.464
orig.pG 378.21 46.773
orig.pH 389.83 42.457
orig.pI 409.72 42.655
orig.pJ 417.02 42.198
orig.pK 445.65 42.027
残差图:
plot(res.blk, 'residuals')
空间效应图
plot(res.blk, type = 'spatial')
近期内,将继续演示breedR的空间分析模型和遗传竞争模型。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-6 06:01
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社