# [March for reflection.|Maynard] luck of guess

[注：下文是群邮件的内容，标题是原有的。内容是学习一篇数学文章的笔记。]

["Terms of awareness /use" folded below] On going is to read a paper of primes to increase generic understanding on mathematics.

In a genuine progress of mathematics a great cancellation is inevitable.

♘   7        5

♗   2        3

Story - The sword was ready.

ℂ ℍ ℕ ℙ ℚ ℝ ℤ ℭ ℜ I|φ∪∩∈ ⊆ ⊂ ⊇ ⊃ ⊄ ⊅ ≤ ≥ Γ Θ Λ α Δ δ μ ≠ ⌊ ⌋ ∨∧∞Φ⁻⁰ 1 ⁱ

So comes the last step ——

П(i)((nj)e(nj(α+b·θ))) ~> П(i)e(bα + b1·θ) - 1 / e(α + b·θ) - 1 ]

shorthands:

--- ( i ) ~ i = 0, ..., k - 1;

--- ( nj ) ~ 0 ≤ nj < b.

Note: here, the index of ni is replaced by nj for clarity.

The actual target is ——

(nj)e(nj(α+b·θ)) ~> e(bα + b1·θ) - 1 / e(α + b·θ) - 1

---- The denominator appears the handle...

---- First guess ——

(nj)e(nj(α+b·θ)) = e(α + b·θ) - 1·(nj)e(nj(α+b·θ)) / e(α + b·θ) - 1

---- Now, one focuses on ——

e(α + b·θ) - 1·(nj)e(nj(α+b·θ))

= ∑(nj)e(α + b·θ)e(nj(α+b·θ)) - ∑(nj)e(nj(α+b·θ))  (#)

---- Now, one focuses on ——

e(α + b·θ)e(nj(α+b·θ))

e(α + b·θ + nj(α+b·θ))

= e((1+nj)(α+b·θ))

---- It appears to have a "right" look.

(nj)e((1+nj)(α+b·θ)) - ∑(nj)e(nj(α+b·θ))

e((1+n0)(α+b·θ)) + e((1+n1)(α+b·θ)) + ... + e((1+nb-1)(α+b·θ))

- [ e(n0(α+b·θ)) + e(n1(α+b·θ)) + e(nj(α+b·θ)) + ... + e(nb-1(α+b·θ)) ]  ($) ---- We are ariving at the target —— ---- For the fixed i of (α + b·θ), the coefficient nj is nothing but the digital number 0, 1, ..., b -1 in order. Note: One may need to check this point closely in the last note* (near the end). ---- So, 1 + nj is just 1, 2, ..., b, a shift of nj to the right-hand side by one step. ---- In a genuine progress of mathematics, a great cancellation is inevitable.(TOM) ---- So the left terms of ($) are ——

e((1+nb-1)(α+b·θ)) - e(n0(α+b·θ))

= e(bα + b1·θ) - 1.

---- Take it to the top, one has ——

(nj)e(nj(α+b·θ)) = e(bα + b1·θ) - 1 /  e(α + b·θ) - 1

.

Comment: in retrospect, it was a correct decision to read this paper.

ℂ ℍ ℕ ℙ ℚ ℝ ℤ ℭ ℜ I|φ∪∩∈ ⊆ ⊂ ⊇ ⊃ ⊄ ⊅ ≤ ≥ Γ Θ Λ α Δ δ μ ≠ ⌊ ⌋ ∨∧∞Φ⁻⁰ 1

.

Terms of awareness/ use

https://blog.sciencenet.cn/blog-315774-1348769.html

## 全部精选博文导读

GMT+8, 2022-12-6 04:29