我算故我在分享 http://blog.sciencenet.cn/u/metanb

博文

[March for reflection.|Maynard] luck of guess

已有 1178 次阅读 2022-7-26 08:03 |个人分类:牛津大学|系统分类:科研笔记

[注:下文是群邮件的内容,标题是原有的。内容是学习一篇数学文章的笔记。]

["Terms of awareness /use" folded below] On going is to read a paper of primes to increase generic understanding on mathematics.

In a genuine progress of mathematics a great cancellation is inevitable.

    ♘   7        5

 

    ♗   2        3

Story - The sword was ready.

 ℂ ℍ ℕ ℙ ℚ ℝ ℤ ℭ ℜ I|φ∪∩∈ ⊆ ⊂ ⊇ ⊃ ⊄ ⊅ ≤ ≥ Γ Θ Λ α Δ δ μ ≠ ⌊ ⌋ ∨∧∞Φ⁻⁰ 1 ⁱ

So comes the last step ——

П(i)((nj)e(nj(α+b·θ))) ~> П(i)e(bα + b1·θ) - 1 / e(α + b·θ) - 1 ] 

shorthands:

--- ( i ) ~ i = 0, ..., k - 1;

--- ( nj ) ~ 0 ≤ nj < b.

Note: here, the index of ni is replaced by nj for clarity. 

The actual target is ——

(nj)e(nj(α+b·θ)) ~> e(bα + b1·θ) - 1 / e(α + b·θ) - 1

---- The denominator appears the handle...

---- First guess ——

(nj)e(nj(α+b·θ)) = e(α + b·θ) - 1·(nj)e(nj(α+b·θ)) / e(α + b·θ) - 1

---- Now, one focuses on ——

    e(α + b·θ) - 1·(nj)e(nj(α+b·θ))

= ∑(nj)e(α + b·θ)e(nj(α+b·θ)) - ∑(nj)e(nj(α+b·θ))  (#)

---- Now, one focuses on ——

   e(α + b·θ)e(nj(α+b·θ)) 

e(α + b·θ + nj(α+b·θ))

= e((1+nj)(α+b·θ))

---- It appears to have a "right" look.

---- Now, return to (#) for a replacement ——

(nj)e((1+nj)(α+b·θ)) - ∑(nj)e(nj(α+b·θ))

e((1+n0)(α+b·θ)) + e((1+n1)(α+b·θ)) + ... + e((1+nb-1)(α+b·θ))

- [ e(n0(α+b·θ)) + e(n1(α+b·θ)) + e(nj(α+b·θ)) + ... + e(nb-1(α+b·θ)) ]  ($)

---- We are ariving at the target ——

---- For the fixed i of (α + b·θ), the coefficient nj is nothing but the digital number 0, 1, ..., b -1 in order.

Note: One may need to check this point closely in the last note* (near the end).

---- So, 1 + nj is just 1, 2, ..., b, a shift of nj to the right-hand side by one step.

---- In a genuine progress of mathematics, a great cancellation is inevitable.(TOM) 

---- So the left terms of ($) are ——

   e((1+nb-1)(α+b·θ)) - e(n0(α+b·θ))

= e(bα + b1·θ) - 1.

---- Take it to the top, one has ——

(nj)e(nj(α+b·θ)) = e(bα + b1·θ) - 1 /  e(α + b·θ) - 1

.

Comment: in retrospect, it was a correct decision to read this paper.

 ℂ ℍ ℕ ℙ ℚ ℝ ℤ ℭ ℜ I|φ∪∩∈ ⊆ ⊂ ⊇ ⊃ ⊄ ⊅ ≤ ≥ Γ Θ Λ α Δ δ μ ≠ ⌊ ⌋ ∨∧∞Φ⁻⁰ 1

.

Terms of awareness/ use



https://blog.sciencenet.cn/blog-315774-1348769.html

上一篇:[March for reflection:|.Maynard] Martial of usage
下一篇:如何"零基础"研读最新菲奖论文?
收藏 IP: 223.11.187.*| 热度|

2 李宏翰 刘炜

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-3 01:57

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部