龚明物理学博客分享 http://blog.sciencenet.cn/u/skylark1981 用科学的思维理解每天发生的事情

博文

什么是Majorana Fermion?

已有 12336 次阅读 2012-4-12 21:38 |系统分类:科普集锦

如何实现Majorana Fermion是现在凝聚态、原子光学等领域最火的一个方向。2011年APS March meeting有好几个会场都是和Majorana Fermion有关,当时很多人提出了各种模型号称可以观察到Majorana Fermion,在2012年APS March meeting就有好几个组报道了Majorana存在的证据。当然在我看来,有些结果可能是打酱油的。在这个领域里面, 有很多中国人在做,比如Fu Liang@Harvard, Yi Cui@Standford等等,其中Fu Liang的贡献最大。在国内Qi Kun Xue@Tsinghua做实验做得很好。我很佩服,因为Xue老师能够以最快的速度把握最前沿的研究方向。其实,国内的大学里面很牛的人很多,但是大部分都不能抓住前沿方向,自从回国以后就一直停留在自己以前做的方向,殊不知前沿的东西总是在变化,于是越做越艰难,越做越不能发好文章。当然这些是题外话,有感而发。这个领域进展神速,我差点就掉队了,不过幸好今年也做了几个个关于Majorana Fermion的理论工作,其中两个是半导体纳米线的,一个是冷原子的。不过每天浏览arxiv,基本上都可以看到关于Majorana的文章,有时候今天有了一个想法,明天就看到别人的文章贴出来了,想想,还是很惊心动魄的。

我们可以把任何一个Fermi子分解成实部和虚部
a = b + ic    (Eq. 1)
其中, b, c为Majorana算子,而且满足 b+ = b, c+ = c, 这样我们可以证明{a, a+} = 1。 由于b, c也是Fermion,所以它们也满足{b, b+} =1, => b2 = 1/2, 类似的,{c, c+} =1, => c2 = 1/2。 其中1/2表示半个Fermion (half fermion),不是一个完整的Fermion。这个想法很不得了,写出这个公式来,也就注定流芳百世。

Eq. 1的反解可以得到
b = a + a+,  c = i (a - a+)
我们可以定义a = h+, 也就是说,利用电子-空穴关系,这样我们有
b = a + h,  c = i(a - h)
这个结果表明,每个Majorana粒子包括了等权重的电子(particle)-空穴(hole). 所以总的电荷等于0.这也是为什么Majorana
Fermion最早用于描述中微子的原因。由于总的电荷等于0,所以它不应该耦合电磁场。

物理和数学的差别也就在此,对于做数学的人来说,Eq. 1也许意味这某种变换,但是对于做物理的人而言,Eq.1应该有具体的物理意义,或者说,b, c应该不是虚拟的,而是有可能存在的。这一找,到现在找了80年,还是没有找到。最近几年之所以特别火,是因为也许我们终于可以找到了。想想,Majorana已经去世80年了,但是大家还是不能忘记他的思想,而且从来不记。

这种half fermion在现实世界中很难找到,尤其是在固体物理框架下很难观察到(很抱歉我对粒子物理不是很熟悉,但是我估计固体物理中也很难,因为尽管Majorana提出它的模型是为了揭示中微子,但是好像失败了)。其原因大概有这几个。(1) 固体物理基本都是和电荷有关,而且是电荷守恒的(U(1) gauge invariant,所以耦合电磁波);  (2)按照公式(Eq.1)分解的两个half Fermion由于很强的库伦相互作用,所以很快会复合成单个普通的Fermion。(3)系统必须在某种拓扑区域。在实际过程中,要满足第二个条件,要求系统是金属,这样电荷的屏蔽效益可以让电子变成短程相互作用。第一个条件要求破坏U(1)规范不变性,比如超导体。 超导体基本可以同时满足第一和第二两个条件,但是很难满足第三个条件。因为绝大部分材料是s-wave的,p-wave的很少(实验证明还很难)。Green和Read在2000年的PRB证明p-wave超导体可以观察到这种粒子,这个工作很有启发性,也激发了很多人对超导体的兴趣(大量的工作都和这个工作有关,包括anomalous Andreev reflection等等).  但是由于这种超导体很少,要观察到这种粒子看似遥遥无期,我不指望。但是从物理上来说,研究p-wave的拓扑相变曾经是物理中的研究热点,包括其在冷原子物理中的一些实现,以及可能的拓扑量子计算 (S. Darma, Freedman等人做了很多工作,2006 - 2008年S. Darma组发了很多PRL文章都和它有关). 

既然很难实现,那么是否有其它可能的方法?这个进展一个很有趣的想法是自旋轨道耦合+s-wave超导等价于一个p-wave超导体。它又激发了大家一轮新的讨论, 从2010年到现在,大量的工作都和这个想法有关。Chuanwei Zhang@WSU在2008年首先在冷原子中意识到了这个关系,后来在2010年被他的同事(Jay D. Sau et al) 应用到纳米线中(利用了proximity effect, Liang Fu在里面做了很多工作). 需要注意这个关系其实Rashba等人早就意识到了,它做了一个坐标变化于是得到了single pairing和triplet pairing, 但是他没有把它和拓扑相变以及Majorana联系在一起,于是和这么重要的发现失之交臂,可惜可惜。

这里我要讨论一下proximity effect. 这个效应最早是用于研究磁学性质的,后来用于研究超导的proximity effect. 当把一个超导体和半导体放在一起,超导的库珀对会隧穿到半导体中,其空间范围和相干长度差不对。一般来说相干长度为um量级,但是半导体纳米线或者纳米阱一般为20 nm左右,所以proximity effect可以被观察到。由于超导体和半导体的接触一般都非常复杂,至于其proximity effect到底如何,其实是很难简单说明白的。现在大部分人都还没有开始关注这个问题,以后肯定会有很多。我们注意到自从Andreev reflection提出来以后,现在有大量的人关注界面对Andreev reflection的影响,也有很多tight-binding的文章。随着实验的进展,在超导的proximity effect上也肯定有很多。我已经写了一个tight-binding的程序,以后可以做这个方面的计算。这个方法最好的地方是可以研究disorder对proximity effect的影响。







https://blog.sciencenet.cn/blog-709494-558639.html


下一篇:我看"金陵十三钗"
收藏 IP: 134.121.40.*| 热度|

2 贺鹏 yangwencao

发表评论 评论 (4 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 00:21

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部