||
2024年诺贝尔化学奖得主John M. Jumper AlphaFold3 2024年 当年论文获奖
1. Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Core Contributor, Google DeepMind, London, UK.
jaderberg@isomorphiclabs.com
Nature (P 1476-4687 E 0028-0836) H指数:1096 2024 年 630 卷 8016 期 493-500 页
PMID:38718835 相似文献
文摘 DOI链接 Nature Publishing Group
http://www.pubmedplus.cn/P/SearchQuickResult?wd=6846f457-e1f5-48fa-9d58-474acf2e2587
陈德旺 38岁的诺奖得主给年轻人才成长的几点启示 精选2018年开发的AlphaFold功能还比较弱,只能解析几十个蛋白质结构。 AlphaFold2于2020年面市,能在超过2亿个蛋白质结构中做出精准预测,大大解放了做蛋白质解析的科研人员。2024年5月的AlphaFold3,将蛋白质带入广泛的生物分子领域,为生物开发与药物设计、基因组学研究奠定了基础。
https://blog.sciencenet.cn/blog-57940-1454689.html
2024年诺贝尔化学奖得主John M. Jumper 2024年 原文
https://pubmed.ncbi.nlm.nih.gov/38718835/
Nature
. 2024 Jun;630(8016):493-500.
doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
Accurate structure prediction of biomolecular interactions with AlphaFold 3Affiliations expand
PMID: 38718835
PMCID: PMC11168924
The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.
© 2024. The Author(s).
Conflict of interest statementAuthor-affiliated entities have filed US provisional patent applications including 63/611,674, 63/611,638 and 63/546,444 relating to predicting 3D structures of molecule complexes using embedding neural networks and generative models. All of the authors other than A.B., Y.A.K. and E.D.Z. have commercial interests in the work described.
FiguresFig. 1. AF3 accurately predicts structures across…
Fig. 2. Architectural and training details.
a…
Fig. 3. Examples of predicted complexes.
Selected…
Fig. 4. AF3 confidences track accuracy.
a…
Fig. 5. Model limitations.
a , Antibody…
Extended Data Fig. 1. Disordered region prediction.
All figures (14)
Similar articlesBenchmarking AlphaFold for protein complex modeling reveals accuracy determinants.
Protein Sci. 2022 Aug;31(8):e4379. doi: 10.1002/pro.4379.PMID: 35900023 Free PMC article.
Applying and improving AlphaFold at CASP14.
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.PMID: 34599769 Free PMC article.
Structure. 2021 Jun 3;29(6):606-621.e5. doi: 10.1016/j.str.2021.01.005. Epub 2021 Feb 3.PMID: 33539768 Free PMC article.
Brief Bioinform. 2024 Mar 27;25(3):bbae162. doi: 10.1093/bib/bbae162.PMID: 38739759 Free PMC article. Review.
Methods for Molecular Modelling of Protein Complexes.
Methods Mol Biol. 2021;2305:53-80. doi: 10.1007/978-1-0716-1406-8_3.PMID: 33950384 Review.
Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches.
J Mol Neurosci. 2024 Oct 7;74(4):94. doi: 10.1007/s12031-024-02271-x.PMID: 39373898 Free PMC article.
Bioinform Biol Insights. 2024 Sep 23;18:11779322241280580. doi: 10.1177/11779322241280580. eCollection 2024.PMID: 39372506 Free PMC article.
Front Genet. 2024 Sep 20;15:1469600. doi: 10.3389/fgene.2024.1469600. eCollection 2024.PMID: 39371418 Free PMC article.
Mol Cancer. 2024 Oct 5;23(1):223. doi: 10.1186/s12943-024-02140-6.PMID: 39369244 Free PMC article.
DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis.
Cell Death Differ. 2024 Oct 3. doi: 10.1038/s41418-024-01385-4. Online ahead of print.PMID: 39362992
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. - PMC - PubMed
Kreitz J, et al. Programmable protein delivery with a bacterial contractile injection system. Nature. 2023;616:357–364. - PMC - PubMed
Lim Y, et al. In silico protein interaction screening uncovers DONSON’s role in replication initiation. Science. 2023;381:eadi3448. - PMC - PubMed
Mosalaganti S, et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science. 2022;376:eabm9506. - PubMed
Anand, N. & Achim, T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. Preprint at arXiv10.48550/arXiv.2205.15019 (2022).
Show all 73 references
MeSH termsAntibodies / chemistry
Antibodies / metabolism
Antigens / chemistry
Antigens / metabolism
Deep Learning* / standards
Humans
Ions / chemistry
Ions / metabolism
Ligands*
Models, Molecular*
Molecular Docking Simulation
Nucleic Acids / chemistry
Nucleic Acids / metabolism
Protein Binding
Protein Conformation
Proteins* / chemistry
Proteins* / metabolism
Reproducibility of Results
Software* / standards
AlphaFold3 研究文献分析如下
http://www.pubmedplus.cn/P/SearchQuickResult?wd=51348148-5f67-4019-bfdc-f8ba843eac3c
01. | 无法确认 | 6 篇 | 27.273% |
02. | 2024 | 9 篇 | 40.909% |
01. | biorxiv | 2 篇 | 9.091% |
02. | int j biol macromol | 2 篇 | 9.091% |
03. | nature | 2 篇 | 9.091% |
04. | arxiv | 1 篇 | 4.545% |
05. | bioinformatics | 1 篇 | 4.545% |
06. | chembiochem | 1 篇 | 4.545% |
07. | int j mol sci | 1 篇 | 4.545% |
08. | j am chem soc | 1 篇 | 4.545% |
09. | j chem inf model | 1 篇 | 4.545% |
10. | j magn reson | 1 篇 | 4.545% |
01. | 美国 | 7 篇 | 31.818% |
02. | 加拿大 | 3 篇 | 13.636% |
03. | 中国 | 2 篇 | 9.091% |
04. | 奥地利 | 1 篇 | 4.545% |
05. | 荷兰 | 1 篇 | 4.545% |
06. | 瑞士 | 1 篇 | 4.545% |
07. | 土耳其 | 1 篇 | 4.545% |
01. | 中国上海 | 1 篇 | 4.545% |
02. | 中国福州 | 1 篇 | 4.545% |
03. | 中国衡阳 | 1 篇 | 4.545% |
01. | Protein Conformation | 6 篇 | 27.273% |
02. | Protein Folding | 5 篇 | 22.727% |
03. | Proteins | 5 篇 | 22.727% |
04. | Software | 5 篇 | 22.727% |
05. | Models, Molecular | 3 篇 | 13.636% |
06. | Algorithms | 2 篇 | 9.091% |
07. | Artificial Intelligence | 2 篇 | 9.091% |
08. | Computational Biology | 2 篇 | 9.091% |
09. | Deep Learning | 2 篇 | 9.091% |
10. | Humans | 2 篇 | 9.091% |
AlphaFold3 研究相似文献分析如下
1. Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Core Contributor, Google DeepMind, London, UK.
jaderberg@isomorphiclabs.com
Nature (P 1476-4687 E 0028-0836) H指数:1096 2024 年 630 卷 8016 期 493-500 页
PMID:38718835 相似文献
文摘 DOI链接 Nature Publishing Group
http://www.pubmedplus.cn/P/SearchQuickResult?wd=28b5032e-bd31-4b49-8e2a-a0e9f0266981
01. | 无法确认 | 7 篇 | 7.000% |
02. | 2024 | 12 篇 | 12.000% |
03. | 2023 | 20 篇 | 20.000% |
04. | 2022 | 11 篇 | 11.000% |
05. | 2021 | 12 篇 | 12.000% |
06. | 2020 | 7 篇 | 7.000% |
07. | 2018 | 4 篇 | 4.000% |
08. | 2017 | 2 篇 | 2.000% |
09. | 2016 | 3 篇 | 3.000% |
10. | 2015 | 7 篇 | 7.000% |
11. | 2014 | 1 篇 | 1.000% |
12. | 2012 | 1 篇 | 1.000% |
13. | 2011 | 1 篇 | 1.000% |
14. | 2010 | 3 篇 | 3.000% |
15. | 2009 | 1 篇 | 1.000% |
16. | 2008 | 1 篇 | 1.000% |
17. | 2007 | 1 篇 | 1.000% |
18. | 2006 | 1 篇 | 1.000% |
19. | 2005 | 1 篇 | 1.000% |
20. | 2001 | 1 篇 | 1.000% |
21. | 1999 | 1 篇 | 1.000% |
22. | 1997 | 2 篇 | 2.000% |
01. | brief bioinform | 13 篇 | 13.000% |
02. | proteins | 8 篇 | 8.000% |
03. | j chem inf model | 7 篇 | 7.000% |
04. | protein sci | 5 篇 | 5.000% |
05. | j chem theory comput | 4 篇 | 4.000% |
06. | nature | 4 篇 | 4.000% |
07. | nucleic acids res | 4 篇 | 4.000% |
08. | acc chem res | 3 篇 | 3.000% |
09. | biorxiv | 3 篇 | 3.000% |
10. | int j mol sci | 3 篇 | 3.000% |
01. | 美国 | 38 篇 | 38.000% |
02. | 中国 | 23 篇 | 23.000% |
03. | 英国 | 9 篇 | 9.000% |
04. | 德国 | 8 篇 | 8.000% |
05. | 日本 | 5 篇 | 5.000% |
06. | 法国 | 4 篇 | 4.000% |
07. | 韩国 | 4 篇 | 4.000% |
08. | 加拿大 | 4 篇 | 4.000% |
09. | 瑞典 | 4 篇 | 4.000% |
10. | 瑞士 | 4 篇 | 4.000% |
01. | 中国武汉 | 5 篇 | 5.000% |
02. | 中国杭州 | 3 篇 | 3.000% |
03. | 中国长沙 | 3 篇 | 3.000% |
04. | 中国北京 | 2 篇 | 2.000% |
05. | 中国长春 | 2 篇 | 2.000% |
06. | 中国上海 | 2 篇 | 2.000% |
07. | 中国深圳 | 2 篇 | 2.000% |
08. | 中国香港 | 2 篇 | 2.000% |
09. | 中国哈尔滨 | 1 篇 | 1.000% |
10. | 中国常州 | 1 篇 | 1.000% |
01. | Proteins | 68 篇 | 68.000% |
02. | Protein Binding | 50 篇 | 50.000% |
03. | Protein Conformation | 47 篇 | 47.000% |
04. | Ligands | 40 篇 | 40.000% |
05. | Molecular Docking Simulation | 36 篇 | 36.000% |
06. | Nucleic Acids | 34 篇 | 34.000% |
07. | Models, Molecular | 29 篇 | 29.000% |
08. | Software | 28 篇 | 28.000% |
09. | Binding Sites | 21 篇 | 21.000% |
10. | Deep Learning | 21 篇 | 21.000% |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 01:17
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社