行列式(Det: DETERMINANT)中学就学了。一个方形矩阵计算行列式,算大的矩阵要先算小的,符号还得交替变换。知其然不知其所以然,一头雾水。后来读西方写的数学史,才知道中国人早在《九章算术》(公元前2世纪)里就用到了行列式,而西方数学在两千年之后才用到。我们得承认,我们的古代祖先确实聪明,但后人就不行了,到唐朝时《九章算术》很多题目已经没人会做了。而西方则把这些数学步步推进,行列式在数学、物理经常出现。这个 det 符号往往令人望而生畏。它到底是什么?
先看一个简单的二元一次方程组:
a x + b y = e
c x + d y = f
简单的消元
ca x + cb y = c e
ac x + ad y = a f
得出 (ad - cb ) y = af - ce
类似的: (da - bc ) x = de - bf
对比原来的方程组,这样对角相乘、然后相减的数 ad -bc 出现了,同一行、同一列的数字不会出现。这个数字我们称之为行列式。如果扩展到三元一次方程组,也有类似的数出现,但公式就复杂多了,因为有9个数字进行三个相乘(但同一行、同一列数字不会出现在一个乘积里)。九章算术里面解多元方程就是这么列阵进行。继续计算,可以发现中学数学里学到的递归计算规律。这是一个(线性)代数的理解。
数学与物理中,我们往往发现仅仅是符号的变化就能大大的简化各种推导与表达,甚至使很多看似复杂的结果变得非常显然。麦克斯韦尔的电磁学 论文发表时还没有矢量符号与偏微分符号,他的论文列出20多个分量方程,看得人眼花缭乱,根本不像现在这么优美简洁。狄拉克发明了 bra - ket 之后,量子力学的各种计算都大大简化,几乎成了机械套用。杨振宁当年为了找到规范场的数学 表达费了很长时间摸索,用 differential form 看,就是几分钟的事情。在这篇博文里,我做了一个CHERN- SIMONS场方程的推导,仅仅是几行;其中一行 $(partial^aepsilon_{banu} - sigma g_{bnu})(partial_{mu} epsilon^{fmunu}-sigma g^{nu f}) B_f=0$,如果不是使用所谓 Einstein 的重复求和等规则,而是把各个分量摊开,这么多上标、下标,估计需要写满好几张纸,会看得我头昏眼花。
中国人发明的行列式在物理中运用极为广泛,但也是一种大大扩展了的运用。古希腊人把行星的运用用圆来解释,不行的话大圆加上小圆。类似的,物理中最基本构件是简谐振子。最基本的物理规律可以说就是没有规律。据 DYSON 回忆,费曼曾对他说一个粒子的运动其实是任意的,选择任何路径,可以跑到月球然后再回来,你把这些路径的几率(复数振幅)加起来就得到了实际结果。DYSON当时回答说:你疯了!当然我们知道,费曼没有疯。恰恰相反,他发现了最深刻的自然规律:路径积分。用费曼的路径积分来分析弹簧振子,把弹簧振子所有可能的路径加起来,包括飞出银河系再回来,有的读者可能会说,弹簧超光速拉伸出银河系早崩 断 -- 疯了。不是这样,费曼怎么是天才呢?总之,我们用费曼方法应该能得到这个经典力学弹簧的结果:在时间为弹簧振子的经典周期的时候,它应该有很大的几率复位。弹簧振子的拉格朗日为 $L = frac{1}{2} m v^2 - frac{1}{2} k x^2$。剩下的这个路径积分是一个数学问题,简言之就是将所有可能的路径的作用量作为几率相角,然后将几率相加。这听起来可能令数学家们头皮发麻,但是理论物理却是家常便饭。下面我略加演示,请大家注意这个 Det 的出现。
首先,
$L = frac{1}{2} m (frac{dx}{dt})^2 - frac{1}{2} k x ^2 = frac{1}{2} m [ frac{d}{dt} (x frac{dx}{dt}) - x frac{d^2 x}{dt^2}] - frac{1}{2} k x^2\= - frac{1}{2} x [m frac{d^2}{dt^2} + k ] x +frac{1}{2} m frac{d}{dt} (x frac{dx}{dt})$
令 $A = - m frac{d^2}{dt^2} - k $, 则从 t=0, x=0, 到 t=T, x=0 的路径积分为 (自然单位 $hbar=1$),
$G = int cal{D}x e^ {i int L(x) dt} = int cal{D} x exp(frac{i}{2}int dt x A x ) = frac{C}{sqrt{det A}}$
因为边界条件,L中的全微分项没有了。上面的积分是个高斯积分,C是一个常数。如果A 是一个矩阵,应该不难理解。把 A 对角化,对角相乘就是该矩阵的行列式。但我们的 A 不是矩阵,而是 一个微分算符。也就是说,上面的结果是
$G propto left[det ( - m frac{d^2}{dt^2} - k)right]^{-frac{1}{2}}$