zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

Major factors determined the controllable abundance of the

已有 1613 次阅读 2017-7-12 19:02 |个人分类:controllable abundance|系统分类:科研笔记

Major factors determined the controllable abundance of the linear discrete-time systems


     In my blog article, “Analytic computing of the infinite-time controllable abundance of the linear discrete-time systems” (http://blog.sciencenet.cn/blog-3343777-1065279.html), the infinite-time controllable abundance of the SISO linear discrete-time systems $\Sigma(A,b)$ can be computed analytically as follows.

   (1) When the matrix $A$ is a diagonal matrix with the $n$ distinct eigenvalues $\lambda_{i}\in(0,1),i=1,2,\cdots,n$ , we have

$v_{c,\infty}=\lim_{N\rightarrow\infty}V_{n}(C_{n}(G_{N}))=\left|\left(\prod_{1\leq j_{1}

where $[b_{1},b_{2},\cdots,b_{n}]^{T}=B$ .

    (2) When the matrix $A$ is an any matrix with the $n$ distinct eigenvalues $\lambda_{i}\in(0,1),i=1,2,\cdots,n$ , we have

$v_{c,\infty}=\lim_{N\rightarrow\infty}V_{n}(C_{n}(G_{N}))=\left|\det(P)\right|\left|\left(\prod_{1\leq j_{1}

where the matrix $P$ is composed of the all right eigenvector of the system matrix $A$ , the row vector $q_{i}$  is the left eigenvector corresponding the eigenvalue $\lambda_{i}$ of the matrix $A$ .

     Based on the above results, we can conclude that the major factors determined the controllable abundance of the SISO linear discrete-time systems with the n distinct eigenvalues are as:

  ⅰ. the magnitude of the eigenvalues.

  ⅱ. the distribution of eigenvalues(the eigenvalues are distinct and their distribution are uniform.).

  ⅲ. the angles between the left eigenvectors of the system matrix $A$ and the input vector b.

  ⅳ. the angles between the any two left eigenvectors of the system matrix $A$ .




https://blog.sciencenet.cn/blog-3343777-1065995.html

上一篇:审稿纠结万象2
下一篇:线性连续系统的能控丰富性的逼近计算
收藏 IP: 27.18.224.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 06:24

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部