||
【译者:简单地说,就是每分钟呼吸5.5次,吸入和呼出时间相同,是最佳的。】
Objectives: Prior studies have found that a breathing pattern of 6 or 5.5 breaths per minute (bpm) was associated with greater heart rate variability (HRV) than that of spontaneous breathing rate. However, the effects of combining the breathing rate with the inhalation-to-exhalation ratio (I:E ratio) on HRV indices are inconsistent. This study aimed to examine the differences in HRV indices and subjective feelings of anxiety and relaxation among four different breathing patterns.
Methods: Forty-seven healthy college students were recruited for the study, and a Latin square experimental design with a counterbalance in random sequences was applied. Participants were instructed to breathe at two different breathing rates (6 and 5.5 breaths) and two different I:E ratios (5:5 and 4:6). The HRV indices as well as anxiety and relaxation levels were measured at baseline (spontaneous breathing) and for the four different breathing patterns.
Results: The results revealed that a pattern of 5.5 bpm with an I:E ratio of 5:5 produced a higher NN interval standard deviation and higher low frequency power than the other breathing patterns. Moreover, the four different breathing patterns were associated with significantly increased feeling of relaxation compared with baseline.
Conclusion: The study confirmed that a breathing pattern of 5.5 bpm with an I:E ratio of 5:5 achieved greater HRV than the other breathing patterns. This finding can be applied to HRV biofeedback or breathing training in the future.
(呼吸过程中)呼气与吸气比率的增加会增强健康成年人的高频心率变异性
Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults
https://pubmed.ncbi.nlm.nih.gov/34289128/
【译者:试一下, 把呼气时间延长到你吸气时间的两倍。】
Heart rate variability (HRV) is a well-established surrogate of cardiac and emotional health that reflects the balance between sympathetic and parasympathetic activity of the autonomic nervous system. We examined the impact of manipulating exhalation to inhalation ratio (E:I) on HRV, without altering the intrinsic breathing rate of healthy individuals. We hypothesized that a longer exhalation relative to inhalation (E:I > 1) would shift HRV metrics in a direction consistent with increased parasympathetic activity. Twenty-eight individuals (16 young [6M, age = 21-28];12 older adults [6M, age = 66-80]) completed a task during which they paced breathing according to their intrinsic respiratory rate, but altered onset of exhalation and inhalation according to 1:1 sound cue (equal exhalation and inhalation duration) or 2:1 cue (exhalation twice as long as inhalation). Paced 1:1 breathing followed these task conditions to examine residual effects. Estimates of actual E:I ratio based on thoracic movement were 1.08(0.16) for 1:1 task and 1.33(0.20) for 2:1 task, which were significantly different from one another. HRV metrics derived from electrocardiogram included root mean square of the successive differences between normal heartbeats (RMSSD) and high-frequency (HF) HRV. Analyses of HRV metrics by block showed that RMSSD and HF-HRV were higher in the 2:1 task condition compared to 1:1. Time series analysis showed that HF-HRV increased after the end of the 2:1 task block and remained elevated for four minutes. These findings suggest that longer duration of exhalation relative to inhalation, without altering breathing rate, acutely increased RMSSD and HF-HRV, consistent with enhancement of cardiac vagal tone.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 21:41
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社