||
2024年 医学诺奖得主Gary Ruvkun最新论文
http://www.pubmedplus.cn/P/SearchQuickResult?wd=a8e78496-59f1-4b38-96bb-ada2ac69b2d9
Katherine S Yanagi,Briar Jochim,Sheikh Omar Kunjo,Peter Breen,Gary Ruvkun,Nicolas Lehrbach
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America.
PLoS Biol (P 1545-7885 E 1544-9173) H指数:234 2024 年 22 卷 7 期 e3002720 页
PMID:38991033 相似文献
Joshua D Meisel,Presli P Wiesenthal,Vamsi K Mootha,Gary Ruvkun
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
vamsi@hms.harvard.edu
Curr Biol (P 1879-0445 E 0960-9822) H指数:290 2024 年 34 卷 12 期 2728-2738.e6 页
PMID:38810637 相似文献
3. Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism.
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
ruvkun@molbio.mgh.harvard.edu
Cell (P 1097-4172 E 0092-8674) H指数:705 2024 年 187 卷 3 期 659-675.e18 页
PMID:38215760 相似文献
原文
https://pubmed.ncbi.nlm.nih.gov/38991033/
PLoS Biol
. 2024 Jul 11;22(7):e3002720.
doi: 10.1371/journal.pbio.3002720. eCollection 2024 Jul.
Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans
Affiliations expand
PMID: 38991033
PMCID: PMC11265709
Abstract
The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.
Copyright: © 2024 Yanagi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Fig 1. Suppressors of bortezomib sensitivity in…
Fig 2. The suppressors act by a…
Fig 3. The suppressors enhance proteostasis and…
Fig 4. Intestinal ENT-4 and nucleotide biosynthesis…
Fig 5. Increased dietary nucleotide availability enhances…
Similar articles
Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression.
Cell. 2019 Apr 18;177(3):737-750.e15. doi: 10.1016/j.cell.2019.03.035.PMID: 31002798 Free PMC article.
NGLY1: insights from Caenorhabditis elegans.
J Biochem. 2022 Feb 21;171(2):145-152. doi: 10.1093/jb/mvab112.PMID: 34697631 Review.
Hum Mol Genet. 2018 Mar 15;27(6):1055-1066. doi: 10.1093/hmg/ddy026.PMID: 29346549 Free PMC article.
Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.
Elife. 2016 Aug 16;5:e17721. doi: 10.7554/eLife.17721.PMID: 27528192 Free PMC article.
The cytoplasmic peptide:N-glycanase (NGLY1) - Structure, expression and cellular functions.
Gene. 2016 Feb 10;577(1):1-7. doi: 10.1016/j.gene.2015.11.021. Epub 2015 Nov 30.PMID: 26611529 Free PMC article. Review.
References
Collins GA, Goldberg AL. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. doi: 10.1016/j.cell.2017.04.023 ; PubMed Central PMCID: PMC5609836. - DOI - PMC - PubMed
Hartl FU. Protein Misfolding Diseases. Annu Rev Biochem. 2017;86:21–6. Epub 20170424. doi: 10.1146/annurev-biochem-061516-044518 . - DOI - PubMed
Pilla E, Schneider K, Bertolotti A. Coping with Protein Quality Control Failure. Annu Rev Cell Dev Biol. 2017;33:439–465. doi: 10.1146/annurev-cellbio-111315-125334 . - DOI - PubMed
Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics. 2014;15(1):38–51. doi: 10.2174/138920291501140306113344 ; PubMed Central PMCID: PMC3958958. - DOI - PMC - PubMed
Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010;38(1):17–28. Epub 2010/04/14. doi: 10.1016/j.molcel.2010.02.029 ; PubMed Central PMCID: PMC2874685. - DOI - PMC - PubMed
Show all 92 references
MeSH terms
Animals
Caenorhabditis elegans Proteins* / genetics
Caenorhabditis elegans Proteins* / metabolism
Caenorhabditis elegans* / genetics
Caenorhabditis elegans* / metabolism
Congenital Disorders of Glycosylation / genetics
Congenital Disorders of Glycosylation / metabolism
DNA-Binding Proteins / genetics
DNA-Binding Proteins / metabolism
Glycosylation
Mutation*
Nucleotides / genetics
Nucleotides / metabolism
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / deficiency
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / genetics
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / metabolism
Proteasome Endopeptidase Complex* / genetics
Proteasome Endopeptidase Complex* / metabolism
Transcription Factors / genetics
Transcription Factors / metabolism
Substances
Caenorhabditis elegans Proteins
DNA-Binding Proteins
Nucleotides
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
Proteasome Endopeptidase Complex
skn-1 protein, C elegans
Transcription Factors
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
http://www.pubmedplus.cn/P/SearchQuickResult?wd=2c6953b8-3e92-4e1d-a1a8-a657c5043952
01. | 无法确认 | 7 篇 | 6.604% |
02. | 2024 | 7 篇 | 6.604% |
03. | 2023 | 2 篇 | 1.887% |
04. | 2022 | 15 篇 | 14.151% |
05. | 2021 | 8 篇 | 7.547% |
06. | 2020 | 14 篇 | 13.208% |
07. | 2019 | 8 篇 | 7.547% |
08. | 2018 | 5 篇 | 4.717% |
09. | 2017 | 8 篇 | 7.547% |
10. | 2016 | 4 篇 | 3.774% |
11. | 2015 | 9 篇 | 8.491% |
12. | 2014 | 4 篇 | 3.774% |
13. | 2013 | 2 篇 | 1.887% |
14. | 2012 | 3 篇 | 2.830% |
15. | 2011 | 2 篇 | 1.887% |
16. | 2010 | 3 篇 | 2.830% |
17. | 2009 | 2 篇 | 1.887% |
18. | 2008 | 1 篇 | 0.943% |
19. | 2007 | 2 篇 | 1.887% |
01. | plos genet | 10 篇 | 9.434% |
02. | j biochem | 9 篇 | 8.491% |
03. | aging cell | 4 篇 | 3.774% |
04. | elife | 4 篇 | 3.774% |
05. | g3 (bethesda) | 4 篇 | 3.774% |
06. | biochem biophys res commun | 3 篇 | 2.830% |
07. | eur j med genet | 3 篇 | 2.830% |
08. | genetics | 3 篇 | 2.830% |
09. | mol cell biol | 3 篇 | 2.830% |
10. | cell rep | 2 篇 | 1.887% |
01. | 美国 | 64 篇 | 60.377% |
02. | 日本 | 21 篇 | 19.811% |
03. | 德国 | 8 篇 | 7.547% |
04. | 中国 | 6 篇 | 5.660% |
05. | 加拿大 | 5 篇 | 4.717% |
06. | 荷兰 | 4 篇 | 3.774% |
07. | 英国 | 4 篇 | 3.774% |
08. | 波兰 | 3 篇 | 2.830% |
09. | 以色列 | 2 篇 | 1.887% |
10. | 澳大利亚 | 1 篇 | 0.943% |
01. | 中国长春 | 1 篇 | 0.943% |
02. | 中国上海 | 1 篇 | 0.943% |
03. | 中国南京 | 1 篇 | 0.943% |
04. | 中国苏州 | 1 篇 | 0.943% |
05. | 中国南昌 | 1 篇 | 0.943% |
06. | 中国重庆 | 1 篇 | 0.943% |
07. | 中国德阳 | 1 篇 | 0.943% |
01. | Animals | 73 篇 | 68.868% |
02. | Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase | 57 篇 | 53.774% |
03. | Humans | 50 篇 | 47.170% |
04. | Caenorhabditis elegans | 47 篇 | 44.340% |
05. | Caenorhabditis elegans Proteins | 43 篇 | 40.566% |
06. | Transcription Factors | 42 篇 | 39.623% |
07. | DNA-Binding Proteins | 39 篇 | 36.792% |
08. | Congenital Disorders of Glycosylation | 38 篇 | 35.849% |
09. | Mutation | 29 篇 | 27.358% |
10. | Proteasome Endopeptidase Complex | 27 篇 | 25.472% |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 17:21
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社