许培扬博客分享 http://blog.sciencenet.cn/u/xupeiyang 跟踪国际前沿 服务国内科研

博文

2024年 医学诺奖得主Gary Ruvkun最新论文 2024年3篇

已有 970 次阅读 2024-10-8 07:07 |个人分类:诺贝尔奖|系统分类:论文交流

2024年 医学诺奖得主Gary Ruvkun最新论文

http://www.pubmedplus.cn/P/SearchQuickResult?wd=a8e78496-59f1-4b38-96bb-ada2ac69b2d9

原文

https://pubmed.ncbi.nlm.nih.gov/38991033/

PLoS Biol

2024 Jul 11;22(7):e3002720.

 doi: 10.1371/journal.pbio.3002720. eCollection 2024 Jul.

Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans

Katherine S Yanagi 1Briar Jochim 1Sheikh Omar Kunjo 1Peter Breen 2Gary Ruvkun 2 3Nicolas Lehrbach 1

Affiliations expand

Abstract

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1

Fig 1. Suppressors of bortezomib sensitivity in…

 Fig 2

Fig 2. The suppressors act by a…

 Fig 3

Fig 3. The suppressors enhance proteostasis and…

 Fig 4

Fig 4. Intestinal ENT-4 and nucleotide biosynthesis…

 Fig 5

Fig 5. Increased dietary nucleotide availability enhances…

Similar articles

See all similar articles

References

    1. Collins GA, Goldberg AL. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. doi: 10.1016/j.cell.2017.04.023 ; PubMed Central PMCID: PMC5609836. - DOI PMC PubMed

    1. Hartl FU. Protein Misfolding Diseases. Annu Rev Biochem. 2017;86:21–6. Epub 20170424. doi: 10.1146/annurev-biochem-061516-044518 . - DOI PubMed

    1. Pilla E, Schneider K, Bertolotti A. Coping with Protein Quality Control Failure. Annu Rev Cell Dev Biol. 2017;33:439–465. doi: 10.1146/annurev-cellbio-111315-125334 . - DOI PubMed

    1. Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics. 2014;15(1):38–51. doi: 10.2174/138920291501140306113344 ; PubMed Central PMCID: PMC3958958. - DOI PMC PubMed

    1. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010;38(1):17–28. Epub 2010/04/14. doi: 10.1016/j.molcel.2010.02.029 ; PubMed Central PMCID: PMC2874685. - DOI PMC PubMed

Show all 92 references

MeSH terms

  • Animals

  • Caenorhabditis elegans Proteins* / genetics

  • Caenorhabditis elegans Proteins* / metabolism

  • Caenorhabditis elegans* / genetics

  • Caenorhabditis elegans* / metabolism

  • Congenital Disorders of Glycosylation / genetics

  • Congenital Disorders of Glycosylation / metabolism

  • DNA-Binding Proteins / genetics

  • DNA-Binding Proteins / metabolism

  • Glycosylation

  • Mutation*

  • Nucleotides / genetics

  • Nucleotides / metabolism

  • Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / deficiency

  • Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / genetics

  • Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase / metabolism

  • Proteasome Endopeptidase Complex* / genetics

  • Proteasome Endopeptidase Complex* / metabolism

  • Transcription Factors / genetics

  • Transcription Factors / metabolism

Substances

  • Caenorhabditis elegans Proteins

  • DNA-Binding Proteins

  • Nucleotides

  • Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase

  • Proteasome Endopeptidase Complex

  • skn-1 protein, C elegans

  • Transcription Factors

Related information

Grants and funding

LinkOut - more resources

http://www.pubmedplus.cn/P/SearchQuickResult?wd=2c6953b8-3e92-4e1d-a1a8-a657c5043952

01.无法确认7 篇6.604%
02.20247 篇6.604%
03.20232 篇1.887%
04.202215 篇14.151%
05.20218 篇7.547%
06.202014 篇13.208%
07.20198 篇7.547%
08.20185 篇4.717%
09.20178 篇7.547%
10.20164 篇3.774%
11.20159 篇8.491%
12.20144 篇3.774%
13.20132 篇1.887%
14.20123 篇2.830%
15.20112 篇1.887%
16.20103 篇2.830%
17.20092 篇1.887%
18.20081 篇0.943%
19.20072 篇1.887%
01.plos genet10 篇9.434%
02.j biochem9 篇8.491%
03.aging cell4 篇3.774%
04.elife4 篇3.774%
05.g3 (bethesda)4 篇3.774%
06.biochem biophys res commun3 篇2.830%
07.eur j med genet3 篇2.830%
08.genetics3 篇2.830%
09.mol cell biol3 篇2.830%
10.cell rep2 篇1.887%
01.美国64 篇60.377%
02.日本21 篇19.811%
03.德国8 篇7.547%
04.中国6 篇5.660%
05.加拿大5 篇4.717%
06.荷兰4 篇3.774%
07.英国4 篇3.774%
08.波兰3 篇2.830%
09.以色列2 篇1.887%
10.澳大利亚1 篇0.943%
01.中国长春1 篇0.943%
02.中国上海1 篇0.943%
03.中国南京1 篇0.943%
04.中国苏州1 篇0.943%
05.中国南昌1 篇0.943%
06.中国重庆1 篇0.943%
07.中国德阳1 篇0.943%
01.Animals73 篇68.868%
02.Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase57 篇53.774%
03.Humans50 篇47.170%
04.Caenorhabditis elegans47 篇44.340%
05.Caenorhabditis elegans Proteins43 篇40.566%
06.Transcription Factors42 篇39.623%
07.DNA-Binding Proteins39 篇36.792%
08.Congenital Disorders of Glycosylation38 篇35.849%
09.Mutation29 篇27.358%
10.Proteasome Endopeptidase Complex27 篇25.472%



https://blog.sciencenet.cn/blog-280034-1454198.html

上一篇:2024年 医学诺奖得主Victor Ambros 最新论文 2024年2篇
下一篇:书画创作 书画同源
收藏 IP: 223.72.64.*| 热度|

3 郑永军 高宏 刘跃

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 17:21

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部