张金龙的博客分享 http://blog.sciencenet.cn/u/zjlcas 物种适应性、分布与进化

博文

R拟合统计分布并绘制曲线

已有 21139 次阅读 2014-10-31 12:41 |系统分类:科研笔记

R软件拟合统计分布并绘制曲线


在统计分析中, 经常会用到统计分布拟合, 这里介绍MASS程序包的 fitdistr(), 该函数可以用来拟合  "beta", "cauchy", "chi-squared", "exponential", "f", "gamma", "geometric", "log-normal", "lognormal", "logistic", "negative binomial", "normal", "Poisson", "t" 以及 "weibull" 的概率密度分布, 现举例如下:


library(MASS)

 

#### Gammadistribution

x <-rgamma(100, shape =5, rate =0.1)

res <- fitdistr(x, "gamma")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dgamma(xfit,res[[1]][1],res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

####"beta"                

 

x <-rbeta(100, shape1 =5, shape2 =2)

res <- fitdistr(x, "beta", start=list(shape1 =4, shape2 =1))

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dbeta(xfit,res[[1]][1],res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

####"cauchy",            

"cauchy",

 

x <-rcauchy(100, location =200, scale=300)

res <- fitdistr(x, "cauchy")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dcauchy(xfit,res[[1]][1],res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

####"chi-squared",        

"chi-squared",

 

x <-rchisq(100, df=5, ncp =2)

res <- fitdistr(x, "chi-squared", start=list(df=2, ncp =1))

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dchisq(xfit,res[[1]][1],res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

 

####"exponential",        

"exponential"

 

x <-rexp(100, rate =10)

res <- fitdistr(x, "exponential")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dexp(xfit,res[[1]][1])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

 

####"f",                  

"f"

x <-rf(100, df1 =60, df2 =50)

res <- fitdistr(x, "f", start=list(df1 =10, df2 =2))

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-df(xfit,res[[1]][1], res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

####"lognormal",          

"lognormal"

 

x <-rlnorm(100, meanlog =5, sdlog =1.5)

res <- fitdistr(x, "lognormal")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dlnorm(xfit,res[[1]][1], res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

####"logistic",          

"logistic",

 

x <-rlogis(100, location =5, scale=2)

res <- fitdistr(x, "logistic", start=list(location=5, scale=2))

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dlogis(xfit,res[[1]][1], res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

#### "negativebinomial",  

"negative binomial",

 

x <-rnbinom(100, size =300, prob =.3)

res <- fitdistr(x, "negative binomial")

h <-hist(x)

xfit <-floor(seq(min(x), max(x), by=(max(x)-min(x))/100))

yfit <-dnbinom(xfit,size = res[[1]][1], mu = res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

 

####"normal",            

"normal"

 

x <-rnorm(100, mean=15, sd=2)

res <- fitdistr(x, "normal")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dnorm(xfit, mean= res[[1]][1], sd= res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

 

####"Poisson",            

"Poisson",

x <-rpois(100, lambda =400)

res <- fitdistr(x, "Poisson")

h <-hist(x)

xfit <-floor(seq(min(x), max(x), by=(max(x)-min(x))/100))

yfit <-dpois(xfit,res[[1]][1])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

####"t"                  

"t"

x <-rt(100, df=5)

res <- fitdistr(x, "t")

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dt(xfit,res[[1]][3])  

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 

 

####"weibull"            

"weibull"

 

x <-rweibull(100, shape =5, scale=9)

res <- fitdistr(x, "weibull", start=list(shape =1, scale=1))

h <-hist(x)

xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100)

yfit <-dweibull(xfit,res[[1]][1], res[[1]][2])

yfit <- yfit*diff(h$mids[1:2])*length(xfit)

lines(xfit, yfit, col="blue", lwd=2)

 

 




https://blog.sciencenet.cn/blog-255662-840037.html

上一篇:基于Rcpp建立一个整合C++函数的R程序包(Rcpp编程)
下一篇:线性模型参数的极大似然估计
收藏 IP: 202.64.82.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-25 14:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部