求真分享 http://blog.sciencenet.cn/u/zlyang 求真务实

博文

[ein Stein, 趣闻,科普] 单一形状的非周期平面密铺

已有 646 次阅读 2024-11-30 22:49 |个人分类:资料与科普|系统分类:科普集锦

[ein Stein, 趣闻,科普] 单一形状的非周期平面密铺

                         

英国约克郡: Yorkshire, England

滑铁卢大学: University of Waterloo

帽子: hat

乌龟: turtle

幽灵: Spectres

非周期性: aperiodic

瓷砖: tile

密铺,几何镶嵌: tiling

             

            

一、单一形状的非周期平面密铺:“幽灵 Spectres

(1)2022-11,David Smith,英国约克郡的一位业余数学家、艺术家和密铺爱好者,退休印刷技术员(retired printing technician),找到了已知的第一种非周期性单瓷砖:“帽子 hat”。

   13边形状的帽子(13-sided shape, craggy, hatlike shape)

                         

帽子 vocabulary.png

图1  帽子 vocabulary.png

https://www.mckennagene.com/tshirt/more/vocabulary.png

https://www.mckennagene.com/tshirt/learningMore.html

                         

(2)几天之后,David Smith 又发现了:“乌龟 turtle”。

                         

乌龟 turtleWithPersonality.jpg

图2  乌龟 turtle   WithPersonality.png

https://www.mckennagene.com/tshirt/more/turtleWithPersonality.png

https://www.mckennagene.com/tshirt/learningMore.html

                         

(3)2023-05-29 之前,David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss 找到了“幽灵 Spectres”。

   单一形状的非周期密铺完成。

幽灵 spectre turtle2Spectre.png

图3  幽灵 spectre turtle2Spectre.png

https://www.mckennagene.com/tshirt/more/turtle2Spectre.png

https://www.mckennagene.com/tshirt/learningMore.html

                         

(4)“幽灵 Spectres”平面密铺

Jen Christiansen A Chiral Aperiodic Monotile David Smith_裁剪_稀疏.jpg

图4  “幽灵 Spectres”平面密铺

Jen Christiansen A Chiral Aperiodic Monotile David Smith_裁剪_稀疏.jpg

裁剪自:

https://static.scientificamerican.com/dam/m/404b51103d7be4ff/original/saw1224Cutt39_d_TEXT.png?m=1730736763.532&w=2000

https://www.scientificamerican.com/article/mathematicians-discover-a-new-kind-of-shape-thats-all-over-nature/

                         

(5)帽子-乌龟 动图

hat-tiling-animation.gif

图5  帽子-乌龟 动图

https://cs.uwaterloo.ca/~csk/hat/examples/animation.gif

https://cs.uwaterloo.ca/~csk/hat/

                         

二、主要发现者

David Smith’s discovery has been called “mind-boggling.”_小.jpg

图6  David Smith’s discovery has been called “mind-boggling.”

https://www.quantamagazine.org/wp-content/uploads/2023/04/Dave-Smith-courtesyofDaveSmith.webp

https://www.quantamagazine.org/hobbyist-finds-maths-elusive-einstein-tile-20230404/

                         

Craig Kaplan   criag_小.jpg

图7  Craig Kaplan   criag.jpg

https://images.squarespace-cdn.com/content/v1/5aa6128850a54f0331abec9a/84be0815-08d5-455a-b141-98a24bcaf02b/criag.jpg?format=2500w

https://www.mathvalues.org/masterblog/unlocking-the-aperiodic-monotiles-secrets-an-interview-with-craig-kaplan

                         

三、相关报道

https://www.mckennagene.com/tshirt/learningMore.html

   And with the discovery of the spectre shape, the race for a true einstein was complete. This single shape is a "chiral aperiodic monotile", meaning it can tile an infinite plane, without repeating and it is truly just one shape, reflection not required.

   【机器翻译】随着幽灵形状的发现,真正的爱因斯坦的竞赛已经完成。这个单一的形状是一个“手性非周期性单调”,这意味着它可以平铺一个无限的平面,而不需要重复,它真的只是一个形状,不需要反射。

https://www.mckennagene.com/tshirt/learningMore.html

                         

https://mp.weixin.qq.com/s?__biz=MzAwNTA5NTYxOA==&mid=2651497824&idx=2&sn=fb754f7e9262c67403332c978931d8e2&chksm=81318136ba9268c5690ba45eaea5c15e363d03f5883ca931e8b735d6b7d57e276489f30f7b23&scene=27

   2022年11月, David Smith 找到了它. 这就是“帽子”, 已知的第一种非周期性单瓷砖.

   Smith 一位业余数学家、艺术家和密铺爱好者, 他像许多数学发现那样,通过探索和观察,发现了“帽子”. 之后, Smith 与研究人员 Craig Kaplan、Chaim Goodman-Strauss 和 Joseph Samuel Myers 联系, 他们共同验证并确认了这是长久以来寻找的非周期性单瓷砖.

https://mp.weixin.qq.com/s?__biz=MzAwNTA5NTYxOA==&mid=2651497824&idx=2&sn=fb754f7e9262c67403332c978931d8e2&chksm=81318136ba9268c5690ba45eaea5c15e363d03f5883ca931e8b735d6b7d57e276489f30f7b23&scene=27

                         

https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile

   Although the name “einstein” conjures up the iconic physicist, it comes from the German ein Stein, meaning “one stone,” referring to the single tile. The einstein sits in a weird purgatory between order and disorder. Though the tiles fit neatly together and can cover an infinite plane, they are aperiodic, meaning they can’t form a pattern that repeats.

   【机器翻译】虽然“爱因斯坦”这个名字让人联想到这位标志性的物理学家,但它来自德语ein Stein,意思是“一块石头”,指的是一块瓷砖。爱因斯坦坐在秩序和混乱之间的一个奇怪的炼狱里。尽管瓷砖整齐地组合在一起,可以覆盖无限的平面,但它们是非周期性的,这意味着它们不能形成重复的图案。

https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile

                               

参考资料:

[1] 中国科学院物理所,2024-09-27,探索密铺的奥秘:从平移对称到非周期单元

https://mp.weixin.qq.com/s?__biz=MzAwNTA5NTYxOA==&mid=2651497824&idx=2&sn=fb754f7e9262c67403332c978931d8e2&chksm=81318136ba9268c5690ba45eaea5c15e363d03f5883ca931e8b735d6b7d57e276489f30f7b23&scene=27

[2] David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss. A chiral aperiodic monotile [J].  Combinatorial Theory, 2024, 4(2): 

https://escholarship.org/uc/item/4xn41982

https://arxiv.org/abs/2305.17743

[3] Science News, 2023-03-24, Mathematicians have finally discovered an elusive ‘einstein’ tile

https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile 

[4] Erica Klarreich, 2023-04-04, Hobbyist Finds Math’s Elusive ‘Einstein’ Tile

https://www.quantamagazine.org/hobbyist-finds-maths-elusive-einstein-tile-20230404/

[5] The University of Waterloo, 2023-07-05, The vampire einstein: Researchers discover a single shape that tiles the plane aperiodically without reflection

https://cs.uwaterloo.ca/news/vampire-einstein-aperiodic-monotile-without-reflection

动图 hat-tiling-animation.gif

https://cs.uwaterloo.ca/sites/default/files/uploads/images/hat-tiling-animation.gif

https://cs.uwaterloo.ca/~csk/hat/examples/animation.gif

[6] 知乎,2023-10-23,花费数学家400多年时间的非周期密铺问题

https://www.zhihu.com/zvideo/1699801100004417536?utm_psn=1845834964324712448

          

相关链接:

[1] 2024-11-29,[小资料,科普] 地球的运动速度  (自转,太阳,银心,本星系群,穿越星际空间)

https://blog.sciencenet.cn/blog-107667-1462314.html

[2] 2024-05-06,[不是科幻,倡议,讨论] 蓝色地球行动 Blue Earth Actions

https://blog.sciencenet.cn/blog-107667-1432938.html

[3] 2024-08-05,[请教,讨论] 电磁学的实验再检验(17):“真空中单向光速不变”可以直接测量吗?

https://blog.sciencenet.cn/blog-107667-1445222.html

[4] 2024-10-18,[电磁,单向,光速] 感谢《科学智慧火花》给贴出:“斐索齿轮法与脉冲光:单向光速测量的可能性”

https://blog.sciencenet.cn/blog-107667-1455972.html

[5] 2024-11-28,[打听,科普,资料] 牛顿为什么独身(单身,不结婚)?

https://blog.sciencenet.cn/blog-107667-1462138.html

[6] 2024-11-12,[趣闻] 如何获得诺贝尔奖 How to win numerous Nobel prizes

https://blog.sciencenet.cn/blog-107667-1459754.html

[7] 2024-10-31,[科普,小资料] 黏菌(多头绒泡菌)优化设计交通网

https://blog.sciencenet.cn/blog-107667-1457951.html

[8] 2023-12-17,[小资料,趣闻] 贝克莱 George Berkeley 的“科研成果”

https://blog.sciencenet.cn/blog-107667-1414252.html

[9] 2023-01-16,[搞笑?搞哭?汇集] 怎样判断“原创”和“诺贝尔奖成果”?

https://blog.sciencenet.cn/blog-107667-1372203.html

[10] 2020-12-11,冰的铺砌(2020秋,北洋园):卡片机傻拍2020(88)

https://blog.sciencenet.cn/blog-107667-1262294.html

             

感谢您的指教!

感谢您指正以上任何错误!

感谢您提供更多的相关资料!



https://blog.sciencenet.cn/blog-107667-1462408.html

上一篇:[小资料,科普] 地球的运动速度 (自转,太阳,银心,本星系群,穿越星际空间)
收藏 IP: 202.113.11.*| 热度|

16 郑永军 王涛 高宏 宁利中 刘进平 王从彦 钟炳 王安良 段德龙 孙颉 杨学祥 朱晓刚 孙南屏 尤明庆 雒运强 许培扬

该博文允许注册用户评论 请点击登录 评论 (3 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-1 15:26

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部