求真分享 http://blog.sciencenet.cn/u/zlyang 求真务实

博文

[P vs NP,Millennium Prize,科普] William Gasarch 老师的 3 次“ P=?NP

已有 2031 次阅读 2024-7-4 22:46 |个人分类:科学 - 艺术 - 社会|系统分类:科研笔记

[P vs NPMillennium Prize,科普William Gasarch 老师的 3 次“ P=?NP Poll ”

                  

P/NP 问题,P对NP P vs NP, P versus NP problem

民意调查: poll

千禧年大奖难题 The Millennium Prize Problems

克雷数学研究所 Clay Mathematics Institute

黎曼假设 Riemann Hypothesis

                  

                  

一、William Gasarch 老师的 3 次“P=?NP Poll”

1.1  2019 poll

Guest Column: The Third P =? NP Poll

William I. Gasarch

https://dl.acm.org/doi/pdf/10.1145/3319627.3319636  

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Does P NP (March 2019, vol. 50, no. 1) 截图_拉曲线.png

图1  2019的主要结论

                  

1.2  2012 poll

Guest Column: The Second P =? NP Poll

William I. Gasarch

https://dl.acm.org/doi/pdf/10.1145/2261417.2261434

https://www.cs.umd.edu/~gasarch/papers/poll2012.pdf

                  

1.3  2002 poll

Guest Column: The P=?NP Poll

William I. Gasarch

https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper1.pdf

                  

二、William Gasarch 老师的照片

mii.jpg

图2  mii.jpg

https://www.cs.umd.edu/users/gasarch/mii.jpg

https://www.cs.umd.edu/users/gasarch/

                  

billvdw.jpg

图3  billvdw.jpg

https://www.cs.umd.edu/users/gasarch/PICTURES/billvdw.jpg

https://www.cs.umd.edu/~gasarch/

                  

rachael.jpg

图4  rachael.jpg

https://www.cs.umd.edu/users/gasarch/PICTURES/rachael.jpg

https://www.cs.umd.edu/users/gasarch/

https://www.cs.umd.edu/~gasarch/

                  

p1_副本.jpg

图5  p1.jpg

https://www.cs.umd.edu/~gasarch/COURSES/452/F14/p1.jpg

https://www.cs.umd.edu/~gasarch/COURSES/452/F14/F14.html

                              

参考资料:

[1] Arthur Jaffe, 薛博卿译. 千禧年大奖难题之始与未终[J]. 数学文化, 2020, 11(4): 65-74.

https://www.global-sci.org/intro/article_detail/mc/18380.html

https://www.global-sci.org/intro/articles_list/mc/2043.html

[2] The Millennium Prize Problems, Clay Mathematics Institute

https://www.claymath.org/millennium-problems/

[3] P vs NP, Stephen Cook, Clay Mathematics Institute

https://www.claymath.org/millennium/p-vs-np/

[4] William I. Gasarch. Guest Column: The Third P=?NP Poll [J]. ACM SIGACT News. 2019, 50(1): 38 - 59.    13 March 2019 

doi:  10.1145/3319627.3319636

https://dl.acm.org/doi/10.1145/3319627.3319636

[5] William I. Gasarch. Guest Column: the second P =?NP poll [J]. ACM SIGACT News. 2012, 43(2): 53 - 77.  11 June 2012

doi:  10.1145/2261417.2261434

https://dl.acm.org/doi/10.1145/2261417.2261434

[6] William Gasarch | UMD Department of Computer Science

https://www.cs.umd.edu/people/gasarch

[7] William Gasarch - UMD Department of Computer Science

https://www.cs.umd.edu/~gasarch/

[8] William Gasarch, University of Maryland, College Park, United States, ResearchGate 

https://www.researchgate.net/profile/William-Gasarch  

[9] Books and papers by William Gasarch and co-authors. All sections in rev alpha order

http://www.cs.umd.edu/~gasarch/papers.html

                                 

相关链接:

[1] 2024-04-01,[笔记,数学文化] “千禧年大奖难题”,“发现全新的研究方向或领域”,后者更难能可贵

https://blog.sciencenet.cn/blog-107667-1427807.html

https://wap.sciencenet.cn/blog-107667-1427807.html

[2] 2024-04-28,[资源,统一场,P vs NP] 何为相等?

https://blog.sciencenet.cn/blog-107667-1431879.html

[3] 2024-04-13,[数学文化,P vs NP] 正态分布的四种推导

https://blog.sciencenet.cn/blog-107667-1429560.html

[4] 2024-03-24,[打听,P vs NP] 柯尔莫哥洛夫 Kolmogorov 老师为什么没有研究“ P vs NP”?

https://blog.sciencenet.cn/blog-107667-1426719.html

[5] 2023-07-05,[讨论] P对NP(五):宇宙“热寂”之前,“幂集公理”不会有太大的毛病?

https://blog.sciencenet.cn/blog-107667-1394169.html

[6] 2023-07-31,[小汇报] 对我有“冲击力”的几本书(科普、专著)(1):“P对NP”问题、“反思经典电磁理论”

https://blog.sciencenet.cn/blog-107667-1397378.html

[7] 2016-09-27,平等的相对性与欺骗性(P vs NP):卡片机傻拍2016(132)

https://blog.sciencenet.cn/blog-107667-1005335.html

[8] 2018-08-27,科普经典书目推荐:乔治·伽莫夫的《从一到无穷大》

https://blog.sciencenet.cn/blog-107667-1131373.html

                               

感谢您的指教!

感谢您指正以上任何错误!

感谢您提供更多的相关资料!



https://blog.sciencenet.cn/blog-107667-1440967.html

上一篇:《又捡苹果》(修改自《再别康桥》,不会气死别人吧?)
下一篇:[请教,讨论,笔记] “四色定理 four color theorem”和“康托定理 Cantor theorem”有关
收藏 IP: 202.113.11.*| 热度|

18 刘进平 王涛 高宏 朱晓刚 许培扬 王从彦 宁利中 钟炳 郑永军 鲍博 孙颉 崔锦华 钱大鹏 孙南屏 杨学祥 刘跃 尤明庆 范振英

该博文允许注册用户评论 请点击登录 评论 (9 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-23 14:21

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部