Dr jiapu ZHANG分享 http://blog.sciencenet.cn/u/jiapuzhang

博文

[转载] 全局最优化News

已有 1945 次阅读 2019-3-27 10:09 |系统分类:论文交流|文章来源:转载

global optimal.jpg

https://en.wikipedia.org/wiki/Global_optimization:

General theory[edit]

    Recently, a researcher from Princeton University built a mathematical foundation named minima distribution for global optimization  [1](https://arxiv.org/pdf/1812.03457.pdf). In this work, a relationship between any continuous function f on a compact set {\displaystyle \Omega \subset \mathbb {R} ^{n}} and its global minima f^{*} has been strictly established. As a typical case, it follows that

    limk→∞∫Ωf(x)m(k)(x)dx=f∗,  where  m(k)(x)=e−kf(x)∫Ωe−kf(x)dx;{\displaystyle \lim _{k\to \infty }\int _{\Omega }f(x)m^{(k)}(x)\mathrm {d} x=f^{*},~~{\textrm {where}}~~m^{(k)}(x)={\frac {e^{-kf(x)}}{\int _{\Omega }e^{-kf(x)}\mathrm {d} x}};}{\displaystyle \lim _{k\to \infty }\int _{\Omega }f(x)m^{(k)}(x)\mathrm {d} x=f^{*},~~{\textrm {where}}~~m^{(k)}(x)={\frac {e^{-kf(x)}}{\int _{\Omega }e^{-kf(x)}\mathrm {d} x}};}

    meanwhile,

    limk→∞m(k)(x)={1μ(X∗),x∈X∗,0,x∈Ω−X∗,{\displaystyle \lim _{k\to \infty }m^{(k)}(x)=\left\{{\begin{array}{cl}{\frac {1}{\mu (X^{*})}},&x\in X^{*},\\0,&x\in \Omega -X^{*},\end{array}}\right.}{\displaystyle \lim _{k\to \infty }m^{(k)}(x)=\left\{{\begin{array}{cl}{\frac {1}{\mu (X^{*})}},&x\in X^{*},\\0,&x\in \Omega -X^{*},\end{array}}\right.}

    where {\displaystyle \mu (X^{*})} is the n-dimensional Lebesgue measure of the set of minimizers {\displaystyle X^{*}\in \Omega }. And if f is not a constant on \Omega , the monotonic relationship

    ∫Ωf(x)m(k)(x)dx>∫Ωf(x)m(k+Δk)(x)dx>f∗{\displaystyle \int _{\Omega }f(x)m^{(k)}(x)\mathrm {d} x>\int _{\Omega }f(x)m^{(k+\Delta k)}(x)\mathrm {d} x>f^{*}}{\displaystyle \int _{\Omega }f(x)m^{(k)}(x)\mathrm {d} x>\int _{\Omega }f(x)m^{(k+\Delta k)}(x)\mathrm {d} x>f^{*}}

    holds for all {\displaystyle k\in \mathbb {R} } and {\displaystyle \Delta k>0}, which implies a series of monotonous containment relationships, and one of them is, for examples,

    Ω⊃Df(k)⊃Df(k+Δk)⊃X∗,  where  Df(k)={x∈Ω:f(x)⩽∫Ωf(t)m(k)(t)dt}.{\displaystyle \Omega \supset D_{f}^{(k)}\supset D_{f}^{(k+\Delta k)}\supset X^{*},~~{\textrm {where}}~~D_{f}^{(k)}=\left\{x\in \Omega :f(x)\leqslant \int _{\Omega }f(t)m^{(k)}(t)\mathrm {d} t\right\}.}{\displaystyle \Omega \supset D_{f}^{(k)}\supset D_{f}^{(k+\Delta k)}\supset X^{*},~~{\textrm {where}}~~D_{f}^{(k)}=\left\{x\in \Omega :f(x)\leqslant \int _{\Omega }f(t)m^{(k)}(t)\mathrm {d} t\right\}.}

    And we define a minima distribution to be a weak limit {\displaystyle m_{f,\Omega }} such that the identity

    ∫Ωmf,Ω(x)φ(x)dx=limk→∞∫Ωm(k)(x)φ(x)dx{\displaystyle \int _{\Omega }m_{f,\Omega }(x)\varphi (x)\mathrm {d} x=\lim _{k\to \infty }\int _{\Omega }m^{(k)}(x)\varphi (x)\mathrm {d} x}{\displaystyle \int _{\Omega }m_{f,\Omega }(x)\varphi (x)\mathrm {d} x=\lim _{k\to \infty }\int _{\Omega }m^{(k)}(x)\varphi (x)\mathrm {d} x}

    holds for every smooth function \varphi with compact support in \Omega . Here are two immediate properties of {\displaystyle m_{f,\Omega }}:

    two-conditions.jpg

    As a comparison, the well-known relationship between any differentiable convex function and its minima is strictly established by the gradient. If f is differentiable on a convex set D, then f is convex if and only if

    f(y)⩾f(x)+∇f(x)(y−x),  ∀x,y∈D;{\displaystyle f(y)\geqslant f(x)+\nabla f(x)(y-x),~~\forall x,y\in D;}{\displaystyle f(y)\geqslant f(x)+\nabla f(x)(y-x),~~\forall x,y\in D;}

    thus, {\displaystyle \nabla f(x^{*})=0} implies that {\displaystyle f(y)\geqslant f(x^{*})} holds for all {\displaystyle y\in D}, i.e., x^{*} is a global minimizer of f on D.



    http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1140/c/dmdico.1140.pdf



https://blog.sciencenet.cn/blog-498408-1169887.html

上一篇:[转载] 肥皂泡的极小曲面 (和更高维度裏广泛的极小化问题)
下一篇:[转载] 本年度图灵奖授予“深度学习三巨头"
收藏 IP: 218.185.16.*| 热度|

0

评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

全部作者的精选博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-19 20:35

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部