天空中的一个模式分享 http://blog.sciencenet.cn/u/jiangxun 本博将以数学杂文为主,科技杂文为辅,其它杂文为补。

博文

【数学应知道】2018年Bridge数学

已有 6725 次阅读 2018-12-12 07:31 |个人分类:传数学|系统分类:科普集锦| 数学, 数学都知道, Bridge, Bridge

作者:蒋迅

原文:Bridges 2018

【译者按】听说国内今年召开了一个数学文化会议,说明国内对这个课题越来越重视,值得庆贺。我感觉这个“Bridge数学”应该是与会者们共同感兴趣的会议,因为这个数学文化的学术会议已经存在二十多年了。今年的这个会议内容仍然广泛,而且还增加了特约报告,其形式和内容都很精彩。随便摘录几个就可以看到有:人物,历史,平铺,分形,黄金分割,编织,音乐,绘画,舞蹈,折纸,非欧几何,数学魔术,莫比乌斯,画板,制图,诗词,密码等。遗憾的是,这个数学文化爱好者的盛会中似乎没有来自中国的人,所以从其内容上看也就少了一些中国元素。对於爱好数学文化和艺术的趣味数学爱好者们,不妨认真把“Bridge数学”历年的文章过一遍。这里,我把2018年的文章介绍一下。由於本人没有悉数阅读所有的文章,而且在许多方面都不熟悉,所以下面的翻译一定有很多错误。如有疑问,以英文标题为准。本人是数学的外行,不想对精英数学家指手划脚。对号入座者请止步。谢谢!

Bridge 2018

Bridges 2018

瑞典斯德哥尔摩
   2018年7月25日至29日
   更多信息

     前言
   作者:The Editors


特邀论文

玛乔丽·赖斯和她的五边形平铺 (Marjorie Rice and Her Pentagonal Tilings)
   作者:Doris Schattschneider
   页数:1-2


费尔赫夫的一些回忆  (1927 - 2018) (Some Memories of Koos Verhoeff (1927 - 2018))
   作者:Tom Verhoeff
   页数:3-6


用一盒扑克牌来了解数学魔术的艺术 (A Personal Approach to the Art of Mathemagic with a Deck of Cards)
   作者:Colm Mulcahy
   页数:7-14


普通论文

基於风筝形平铺的艺术与趣味数学 (Art and Recreational Math Based on Kite-Tiling Rosettes)
   作者:Robert Fathauer
   页数:15–22    


重新生成连续朗姆花纹的构成 (Re-Generating Continuous Rumi Compositions)
   作者:Nadide Ebru Yazar and Tugrul Yazar
   页数:23–30    


4-3 解剖平铺系统 (4-3 Dissection Tiling System)
   作者:Andrew Sniderman
   页数:31–38    


多尺度特吕谢模式 (Multi-Scale Truchet Patterns)
   作者:Christopher Carlson
   页数:39–44    


用特吕谢类瓷砖编织的单色地图 (Monochrome Map Weaving with Truchet-Like Tiles)
   作者:Abdalla G.M. Ahmed and Oliver Deussen
   页数:45–52    


凤凰 - 数学的象征 (Phoenix - Symbol of Mathematics)
   作者:Tuomas Nurmi
   页数:53–58    


一个穷人的双曲正方形映射 (A Poor Man's Hyperbolic Square Mapping)
   作者:Chamberlain Fong and Douglas Dunham
   页数:59–66    


非欧几里德空间的万花筒 (Kaleidoscopes for Non-Euclidean Space)
   作者:Peter Stampfli
   页数:67–74    


新变形模式 (New Metamorphosis Patterns)
   作者:Douglas Dunham and John Shier
   页数:75–82    


具有四个著名神话般面孔的极简艺术品 (A Minimal Art Object with Four Famous Fabulous Faces)
   作者:Walt van Ballegooijen and Hans Kuiper
   页数:83–90    


用表面投影构造三维透视变形 (Constructing 3D Perspective Anamorphosis via Surface Projection)
   作者:Tiffany Inglis
   页数:91–98    


蒙德里安再访:窥探第三维度 (Mondrian Revisited: A Peek Into The Third Dimension)
   作者:Martin Skrodzki and Konrad Polthier
   页数:99–106    


自锁SL块的艺术与数学 (The Art and Mathematics of Self-Interlocking SL Blocks)
   作者:Shen-Guan Shih
   页数:107–114    


单一千鸟格纹的圆环和克莱因瓶(Torus and Klein Bottle Tessellations with a Single Tile of Pied de Poule (Houndstooth))
   作者:Loe M.G. Feijs
   页数:115–122    


向查理·佩里致敬 (Homage to Charles O. Perry)
   作者:Carlo H. Sequin
   页数:123–130    


由九面体构造的模块化环形线圈 (Modular Toroids Constructed from Nonahedra)
   作者:Yifat Amir and Carlo H. S□uin
   页数:131–138    


编织双层多面体 (Weaving Double-Layered Polyhedra)
   作者:Rinus Roelofs
   页数:139–146    


具有平面表面的双层编织曲面 (Two-Layer Woven Surfaces with Planar Faces)
   作者:Ulrich Reitebuch, Eric Zimmermann and Konrad Polthier
   页数:147–154    


层状互补结构 (Laminar Reciprocal Structures)
   作者:Javier Barrallo, Francisco Gonzalez-Quintial and Antonio Sanchez-Parandiet
   页数:155–162    


对称谢尔宾斯基族之美 (The Beauty of the Symmetric Sierpinski Relatives)
   作者:Tara Taylor
   页数:163–170    


球面体和三维分形 (Sphairahedra and Three-Dimensional Fractals)
   作者:Kento Nakamura and Kazushi Ahara
   页数:171–178    


方形网格上的平面填充折叠曲线 (Plane-Filling Folding Curves on the Square Grid)
   作者:Jorg Arndt and Julia Handl
   页数:179–186    


关于一个更好的黄金矩形 (On a Better Golden Rectangle (That is Not 61.8033...% Useless!))
   作者:Douglas McKenna
   页数:187–194    


循环形式:从构造到构图 (Loop-Forms: From Construction to Composition)
   作者:James Mai
   页数:195–202    


阿尔马达·内格雷鲁斯的壁画“Comecar”中德五角星和黄金角度 (The Pentagram and the Golden Angle in Almada Negreiros' Mural "Comecar")
   作者:Pedro J. Freitas and Sim□ Palmeirim
   页数:203–210    


数论的说明 (Illustrating the Theory of Numbers)
   作者:Martin Weissman
   页数:211–218    


围绕树木的散步:一个带把手的篮子的6个字母的‘NDA’ (Walking Around Trees: A 6-Letter 'DNA' for Baskets with Handles)
   作者:James Mallos
   页数:219–224    


新的满足交点图猜想的一个新族 (A New Family Satisfying the Intersection Graph Conjecture)
   作者:Ally Stacey
   页数:225–230    


生物细胞生长模拟中的纹理 (Textures in Simulations of Biological Cell Growth)
   作者:David Chappell
   页数:231–236    


一种球形彭罗斯式平铺及其与病毒蛋白模式和模块化雕塑的联系 (A Class of Spherical Penrose-Like Tilings with Connections to Virus Protein Patterns and Modular Sculpture)
   作者:Hamish Todd
   页数:237–244    


六角混沌组合和包装问题的等价类 (Hex-Chaos Compositions and Equivalence Classes of Packing Problems)
   作者:Gary Greenfield
   页数:245–252    


乔治·佩雷克的组合问候 (Combinatorial Greetings from Georges Perec)
   作者:Tatiana Bonch-Osmolovskaya
   页数:253–258    


超空间,诗体科幻小说和代数拓扑 (Hyperspace, Poetic Science Fiction and Algebraic Topology)
   作者:Emily Grosholz
   页数:259–264    


阿尔姆奎斯特的女王的头饰中四边形的几何形状 (Geometry of Quadrangles in Almqvist's The Queen's Tiara)
   作者:Tiina Katriina Kukkonen
   页数:265–272    


舞蹈编排中的注意数学中心及其属性和运动分析 (The Mathematical Center of Attention, its Attributes and Motion Analyses in Dance Choreography)
   作者:Karl Schaffer, Joseph Thie and Kasia Williams
   页数:273–280    


数学马戏团项目 (The Mathematical Circus Project)
   作者:Andreia Hall and Sonia Pais
   页数:281–286    


来自振动壁纸的音乐 (Music from Vibrating Wallpaper)
   作者:Frank Farris
   页数:287–294    


曲调棋盘 (The Checkerboard of Tunes)
   作者:Andrew Crompton
   页数:295–300    


第七和弦调性网络的广义对偶:数学,计算和成分方面 (A Generalized Dual of the Tonnetz for Seventh Chords: Mathematical, Computational and Compositional Aspects)
   作者:Sonia Cannas and Moreno Andreatta
   页数:301–308    


从利德贺大楼r到帕台农神庙:音乐奥德赛 (From the Cheesegrater to the Parthenon: A Musical Odyssey)
   作者:Terry Trickett
   页数:309–316    


工作室中的数学 (Math in the Studio)
   作者:Judy Holdener and Karen Snouffer
   页数:317–324    


悬链线拱构造 (Catenary Arch Constructions)
   作者:George Hart and Elisabeth Heathfield
   页数:325–332    


动画加工中的数学和物理教学 (Teaching Mathematics and Physics for Animation in Processing)
   作者:Lali Barriere
   页数:333–340    


当数学遇见艺术:艺术可能如何有助于理解数学概念? (When Mathematics Meets Art: How Might Art Contribute to the Understanding of Mathematical Concepts?)
   作者:Liora Nutov
   页数:341–346    


短文

舞蹈艺术,数学,教育 - 永恒的三角形 (Dance Art, Math, Education - an Eternal Triangle)
   作者:Paul Moerman
   页数:347–350    


把数学变成舞蹈:跳着舞拿到博士的经验教训 (Turning Math into Dance: Lessons from Dancing My PhD)
   作者:Nancy Scherich
   页数:351–354    


维诺图:教学和艺术应用 (Voronoi Diagrams: Didactical and Artistic Applications)
   作者:Sandra Bento, Helena Ferreira and Andreia Hall
   页数:355–358    


玩特吕谢:使用特吕谢平铺让公众参与数学 (Play Truchet:  Using the Truchet Tiling to Engage the Public with Mathematics)
   作者:Cindy Lawrence
   页数:359–362    


使用简单图案可视化对称子组结构 (Visualizing Symmetry Subgroup Structures Using Simple Motifs)
   作者:David Reimann
   页数:363–366    


数学与艺术教育的奇妙衔接及其与认知和情感发展的关系 (The Marvellous Bridging of Maths and Art Education  and its Relation to Cognitive and Emotional Development)
   作者:Gunnel Berlin
   页数:367–370    


不要传播事实,而是激起行动 (Don't Preach Facts - Stimulate Acts)
   作者:Peter Baptist and Carsten Miller
   页数:371–374    


通过几何与折纸来分享文化遗产:维纳里亚皇家住所的“国王与折纸”实验结果 (Geometry and Origami to Share Cultural Heritage: Results of the Experimentation "The King and the Origami" at the Royal Residence of Venaria)
   作者:Paolo Armand, Caterina Cumino, Martino Pavignano, Maria Luisa Spreafico and Ursula Zich
   页数:375–378    


通过改造游戏和平铺培养学生的数学和技术能力 (Developing Mathematical and Technological Competencies of Students Through Remodeling Games and Puzzles)
   作者:Diego Lieban, Marina Menna Barreto, Sandra Reichenberger, Zsolt Lavicza and Ruana M. Schneider
   页数:379–382    


科学空间:创建科学展览的开放式研讨会概念 (Science Spaces: An Open Workshop Concept to Create Science Exhibits)
   作者:Bianca Violet and Milena Damrau
   页数:383–386    


音乐中的音阶和乘法群 (Musical Scales and Multiplicative Groups)
   作者:Donald Spector
   页数:387–390    


斐波那契的摇滚:使用递归关系和状态转移矩阵来计算岩鼓填充模式 (Rock Me Fibonacci: Using Recurrence Relations and State-Transition Matrices to Count Rock Drum Fill Patterns)
   作者:Joshua Holden
   页数:391–394    


音乐作曲中的组合,概率与选择:走向非音乐家构成系统的美学 (Combinatorics, Probability and Choice in Music Composition: Towards an Aesthetics of Composing Systems for Non-Musicians)
   作者:Giovanni Albini
   页数:395–398    


'梦想链接':理论与音乐创作的链接。 与关键链接相关的组合方法简介 ('Dreamlinks': Link Theory Meets Music Composition. An Introduction to Compositional Methods Related to Primary Links)
   作者:Saverio Tesolato
   页数:399–402    


唯语调键盘:重新构想的同构键盘 (Just Intonation Keyboard: Isomorphic Keyboard Reimagined)
   作者:Marek Zabka
   页数:403–406    


无调性音乐中的区域集价值关系 (The Area Set Value Relationships in Atonal Music)
   作者:Nikita Mamedov
   页数:407–410    


代数被子的地标 (Landmarks in Algebra Quilt)
   作者:Elaine Ellison
   页数:411–414    


Algoritmisch Ritme:算法艺术作为交互式舞蹈投影中的素材 (Algoritmisch Ritme: Algorithmic Art as Material in an Interactive Dance-Projection)
   作者:Daphne Muller and Loe M.G. Feijs
   页数:415–418    


跳跃迭代绘图的一种方法论 (A Methodology of Leaping Iteration for Drawing)
   作者:Ming Jang Chen
   页数:419–422    


冲浪莫比乌斯乐队:艺术与数学联盟的典范 (Surfing the Mobius Band: An Example of the Union of Art and Mathematics)
   作者:Francisco Saez de Adana
   页数:423–426    


捕捉数学家的视觉特徵 - 论安德斯·约翰·莱克塞尔在面相学中的徒劳研究 (Capturing the Visual Traits of a Mathematician - On Anders Johan Lexell's Futile Studies in Physiognomy)
   作者:Johan Sten and Martina Reuter
   页数:427–430    


表现不可判定性 (Representing the Undecidable)
   作者:Michel Tombroff
   页数:431–434    


对凹面透视的观察 (Observations on Concave Perspective)
   作者:Stephen Campbell
   页数:435–438    


哪个整数是最神秘的? (Which Integer Is the Most Mysterious?)
   作者:Osmo Pekonen
   页数:439–442    


从e到隐喻的映射 (Mapping frometo Metaphor)
   作者:Alice Major
   页数:443–446    


德布鲁因序列的艺术 (Art of de Bruijn Sequences)
   作者:Karl Kattchee
   页数:447–450    


扑克牌洗牌可视化 (Card Shuffling Visualizations)
   作者:Roger Antonsen
   页数:451–454    


自行车的艺术与数学:用旧自行车绘制螺旋形图案 (The Art and Mathematics of Cycling: Using Old Bicycles to Draw Spirograph Patterns)
   作者:Nick Sayers
   页数:455–458    


胡安·桑切斯·科坦:看数学 (Juan Sanchez Cotan: Seeing Mathematically)
   作者:Paul Zorn
   页数:459–462    


起草日本佳洁士设计的数学 (Mathematics in Drafting Japanese Crest Designs)
   作者:Felicia Tabing
   页数:463–466    


使用直角三角细分的玻璃马赛克 (Glass Mosaics Using Right-Triangle Subdivision)
   作者:Thomas Denker
   页数:467–470    


离散螺旋序列的多种模式 (A Plethora of Patterns from Discrete Spiraled Sequences)
   作者:Tom Bates
   页数:471–474    


具有比喻子图的计算密集型双关语 (Computationally Intensive Puns with Figurative Subgraphs)
   作者:Robert Bosch
   页数:475–478    


到世界的尽头/一个圆圈上的圈族 (To the World's End/ A Circle Bundle Over a Circle)
   作者:Zachary Treisman and Lun-Yi Tsai
   页数:479–482    


用于大型艺术装置的折叠空间填充双对称十字面体 (Folding Space-Filling Bisymmetric Hendecahedron for a Large-Scale Art Installation)
   作者:Jiangmei Wu and Guy Inchbald
   页数:483–486    


具有恒定扭曲和最小弯曲的三重莫比乌斯带作为四面体环的极限 (A Threefold Mobius Band with Constant Twist and Minimal Bending as the Limit of Tetrahedral Rings)
   作者:Johannes Schonke, Michael Grunwald and Eliot Fried
   页数:487–490    


3D打印混乱 (3D Printing Chaos)
   作者:Michael Gagliardo
   页数:491–494    


具有生物形态的复合平行多面体构件块 (Compound Parallelohedra Building Blocks with Creature-Like Morphologies)
   作者:Akihiro Matsuura
   页数:495–498    


设计铰接立方体平铺的谜题 (Method for Designing a Hinged Cube Puzzle)
   作者:Chirag Mehta
   页数:499–502    


一种基於闭包装圈和多尺寸球的设计师和建筑师设计方法 (A Design Method Based on Close-Packing Circles and Spheres of Multiple Sizes for Designers and Architects)
   作者:Roger Burrows
   页数:503–506    


基於菱形平铺符号的结设计 (Knot Designs Based on Rhombille Tiling Notations)
   作者:Nithikul Nimkulrat and Tuomas Nurmi
   页数:507–510    


3D的吉利赫镶嵌 (Girih Tiles in 3D)
   作者:Ulrich Reitebuch, Henriette-Sophie Lipschutz and Konrad Polthier
   页数:511–514    


通过罗恩·雷施的线性花的镜头对凸形均匀天花的折纸探索 (Origami Explorations of Convex Uniform Tilings Through the Lens of Ron Resch's Linear Flower)
   作者:Uyen Nguyen and Ben Fritzson
   页数:515–518    


自绘花边 (Self-Diagramming Lace)
   作者:Susan Goldstine
   页数:519–522    


莫比乌斯 细胞自动机围巾 (Mobius Cellular Automata Scarves)
   作者:Elisabetta Matsumoto, Henry Segerman and Fabienne Serriere
   页数:523–526    


蜥蜴回路:圆形扇区蜿蜒序列的精致选择 (Lizardy Loops: The Savvy Selection of Sinuous Sequences of Circular Sectors)
   作者:Phil Webster
   页数:527–530    


极限球面,圆纹面和3D双曲线镶嵌 (Horosphere, Cyclide and 3d Hyperbolic Tilings)
   作者:Vladimir Bulatov
   页数:531–534    


折叠鱼形椭圆 (Folding the Vesica Piscis)
   作者:Klara Mundilova and Tony Wills
   页数:535–538    


最小刚性图的实现与构造 (Realizations and Constructions of Minimally Rigid Graphs)
   作者:Georg Grasegger
   页数:539–542    


射影平面的多面体模型 (Polyhedral Models of the Projective Plane)
   作者:Paul Gailiunas
   页数:543–546    


使用形状反转扩展曼德尔盒分形 (Extending Mandelbox Fractals with Shape Inversions)
   作者:Gregg Helt
   页数:547–550    


3-球面中欧几里德平面的虚拟钩针 (Virtual Crocheting of Euclidean Planes in a 3-Sphere)
   作者:Eryk Kopczynski and Dorota Celinska
   页数:551–554    


设计由包合水合物启发的串珠雕塑 (Designing Beaded Sculptures Inspired by Clathrate Hydrates)
   作者:Yuan-Jia Fan, Bih-Yaw Jin and Chia-Chin Tsoo
   页数:555–558    


日晷投影的笛沙格配置 (Desargues Configuration as a Gnomonic Projection)
   作者:Taneli Luotoniemi
   页数:559–562    


动作模块化折纸 (Action Modular Origami)
   作者:Tung Ken Lam
   页数:563–566    


研讨会论文

七循环和九循环莫比乌斯折 (Sevenfold and Ninefold Mobius Kaleidocycles)
   作者:Michael Grunwald, Johannes Schonke and Eliot Fried
   页数:567–574    


自我相似与翻滚广场 (Self-Similarity and the Tumbling Square)
   作者:Susan Happersett
   页数:575–578    


采用一个多面体 - 数学公民艺术项目 (Adopt a Polyhedron -- A Citizen Art Project in Mathematics)
   作者:Anna Maria Hartkopf and G□ter M. Ziegler
   页数:579–584    


折叠花饰及其数学性质探讨 (Folding Curlicue and Exploring Its Mathematical Properties)
   作者:Natalija Budinski
   页数:585–588    


用几何与折纸来制作动态街头艺术 (Geometry and Origami to Make Dynamic Street Art)
   作者:Sara De Grandis, Silvia Fiore, Maria Luisa Spreafico, Marco Torredimare, Margherita Truffa and Ursula Zich
   页数:589–596    


设计思维的几何对象制作 (Geometrical Object Making For Design Thinking)
   作者:Gizem Aytac
   页数:597–602    


开放的Geoboard - 艺术,数学和灵感的平台 (Open Geoboard - a Platform for Art, Math and Inspiration)
   作者:Yordan Hodzhev and Nikola Chernev
   页数:603–608    


创作绘画平铺:数学,艺术,游戏和技术 (Creating Painting Puzzles: Math, Art, Games and Technology)
   作者:Marina Menna Barreto, Diego Lieban and Barbara Kimeswenger
   页数:609–612    


构建绘制曲线的连接 (Constructing Linkages for Drawing Curves)
   作者:Barbara Kimeswenger, Georg Grasegger and Sandra Reichenberger
   页数:613–616    


数学机械制图机的动手实验室 (A Hands-on Laboratory with Mathematical Mechanical Drawing Machines)
   作者:Laura Farroni and Paola Magrone
   页数:617–622    


数学学习的可再生能源:数学课上的风车和水车 (Renewable Energy Resources for Mathematics Learning: Windmills and Water Wheels at the Math Class)
   作者:Kristio Fenyvesi, Ho-Gul Park, Kwang-Cheol Song, Zsolt Lavicza and Mariana Back
   页数:623–628    


通过艺术与数学的整合参与社区 (Engaging Community Through the Integration of Art and Mathematics)
   作者:Ellie Balk and Tricia Stanley
   页数:629–636    


让我们在360o中绘制草图:虚拟现实全景的球形视角 (Let's Sketch in 360o: Spherical Perspectives for Virtual Reality Panoramas)
   作者:Antonio Araujo
   页数:637–644    


诗词猜谜 (Poetry Puzzles)
   作者:Lisa Lajeunesse
   页数:645–648    


理论引领诗歌 (The Theory Headed Poem)
   作者:Carol Dorf
   页数:649–650    


重新构想数学论文 (Reimagining the Mathematical Paper)
   作者:Katie McCallum
   页数:651–658    


体验群结构:通过音乐,诗歌,视觉和烹饪艺术来观察,创造和表演Plain Hunt on 4 (Experiencing Group Structure: Observing, Creating and Performing the Plain Hunt on 4 via Music, Poetry, Visual and Culinary Arts)
   作者:Susan Gerofsky, Eva Knoll, Tara Taylor and Avalon Campbell-Cousins
   页数:659–666    


用技术探索音乐的几何:通过Geogebra的节奏,音阶和气质 (Exploring the Geometry of Music with Technology: Rhythm, Scales and Temperament via Geogebra)
   作者:Steven Bleiler, Ewan Kummel and Michael Wells
   页数:667–672    


用数学创建一个音乐沙盒 (Using Math to Create a Musical Sandbox)
   作者:Esmee Verschoor, Alyssa Eggersgluss, Collin Goldbach, Annmarie Thomas and Allison Knoph
   页数:673–674    


人类可加密的视觉密码学 (Human Encryptable Visual Cryptography)
   作者:Andrea Hawksley and Andrew Lutomirski
   页数:675–680    


一盒扑克牌的数学魔术 (Mathematical Magic With a Deck of Cards)
   作者:Jorge Nuno Silva, Pedro J. Freitas and Tiago Hirth)
   页数:681–686    




https://blog.sciencenet.cn/blog-420554-1151077.html

上一篇:数学漫画 (廿三) 这些卡通画的作者是Desmos
下一篇:《几何小吃》的简约美
收藏 IP: 23.118.52.*| 热度|

5 黄永义 高义 王安良 李春来 zoujinkexue11

该博文允许注册用户评论 请点击登录 评论 (3 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 10:15

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部