|
第三天
Metals主题
K1: Do we needalloying elements for Mg implant materials?
Hort N, Mendis CL,Maier P
MagnesiumInnovation Centre, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Application—property profile---materialsselection
Alloying elements
Any element besides matrix
Micro-alloying <1%
Macro-alloying >1 wt.%
Impurity=alloying element
Stable compound O F Cl
Technologically critic: Fe Co Ge As Se Te
Technologically critic but feasible Cd Ag Ga
Useable elements with known binary phasediagram: Li Ca Sr Ba Sc Y Zr Mn Cu Ag Au Ga Si Bi La Pr Nd Sm Eu Gd Tb Dy Ho ErTm Yb Lu
It is difficult to refine pure Mg (Zr, coldwork + recrystallization)
Mg2.4Zn0.1Ag0.1Ca0.1Zr script mater 64(2011) 335
Stiffness is not the strength
sspec=s/(r*g)(Kg)
Alloying elements, processing steps, requirementsneed to be synchronized.
Defined bench ( give me numbers) arenecessary
O1. Development of high-strengthbioabsorbable Mg alloys suitable for conventional cold-working processes
Griebel AJ, Schaffer JE
Fort Wayne MetalsResearch Products Corp., Fort Wayne, IN, USA
现在研究的医用镁合金没有ZM21 AZ31 AZ61的relative strength的,PLLA PGA的formability
Mg-6Li, Mg-6Li-Al-0.5RE(断裂强度495MPa),Mg-6Li-1Ca, Mg-6Li-0.25Ca
Commercially viable cold-forming, up to 98%reduction of area
O2. Porosity andYoung´s-modulus control und measurement on Mg alloy parts, produced by PM(Powder Metallurgy) and MIM (Metal Injection Moulding)
Wolff M, Ebel T,Kainer KU, Klassen T
Helmholtz-ZentrumGeesthacht, Germany
E-modulus
Characteristicphysical value of the materials or materials characterisatics of theproducts/specimen?
E-moduluscalculation via tensile testing
materials showssame E-properties after plastic deformation
Nonlinear elasticbehavior of Mg [Beck et al., 1940]
Mg does not havean E-modulus in the common way of understanding.
Hyperbolicfunction for E-modulus calculation
Dynamic methodsfor E-modulus calculation
Porositycalculation, via analysis software, photopshop software
Pure Mg+waxpolymer additive MIM
O3. Characterizationof biodegradable magnesium single crystals with various crystallographicorientations
Shin KS, Jung HC,Bian MZ, Nam ND, Kin NJ
MagnesiumTechnology Innovation Center, Seoul National University, Seoul, South Korea
单晶沿着不同方向切,从(0001)到(1010)隔10度一切,腐蚀速度不同。不同的pitting corrosion rate
利用XPS测Cl2p说明不同表面被Cl离子attack的程度不同
O4. Preparation,mechanical and degradation properties of Mg-based microwire for self-assemblystents
Peng Q, Fu H, ZhangJ, Tian Y, Liu R
State KeyLaboratory of Metastable Materials Science and Technology, Yanshan University,China
Stent pipefabricated by the backward extrusion
Stent prepared bymicrowires with melt extraction method
It is still notstable to prepare the uniform tube due to the fluctuation of the bob.
O5. Amorphous alloys– processing, properties and applications
Laws KJ, Cao JD,Ferry M
School ofMaterials Science and Engineering, UNSW, Australia
Mg-Zn-Ca BMG
Mg-rich BMGs---poor thermoplastic forming
Ca-rich BMGs---disintergrate
Zn-richBMGs---poor GFA
Aim: ExploreCa-rich BMGs with high Zn content as potential restorable metals
O6. Fe-based alloyswith TWIP effect for biodegradable stents
Mouzou E, Purnama A,Mostavan A, Paternoster C, Tolouei R, Turgeon S, Mantovani D
Lab. forBiomaterials & Bioengineering (CRC-I), Dept. Min-Met-Materials Engineering& University Hospital Research Centre, Un iversité Laval, Québec City,Canada
For stent, the YS>250MPa UTS>600MPa, elongation >25%, corrosion rate 0.5-0.9mm/Year
High Mn TWIP steel,Fe-Mn-C, the corrosion rate is 0.29 mm/year, 由于强度高可以降低strut thickness从而达到整体降解提高的目的。
Current opinion insolid state and materials science 15(2011) 141-168
O7. Effect of phosphorus on the corrosionbehaviour of electroformed iron-based bilayer materials targeted forbiodegradable stent application
Mostavan A, Paternoster C, Tolouei R, DubéD, Mantovani D
Lab. forBiomaterials & Bioengineering (CRC-I), Dept. Min-Met-Materials Engineering& University Hospital Research Centre, Université Laval, Québec City,Canada
Tubeelectroforming---grinding---mini tube
To obtain bilayerby dual bath technique
Fe electrolyte andFeP electrolyte
Fe layer- FePlayer
E;Fe/FeP1.28mm/year
下午的报告比较短,实际上是墙报的简单介绍,不许提问,每个讲5分钟。
SOP1. Development ofPLGA-infiltrated porous iron for temporary medical implants
Yusop AH, Daud NM,Hermawan H
Faculty ofBiosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM),Malaysia
Acceleratedegradation and enhanced biocompatibilty
SOP2. Degradationstudy of Fe-cermica biocomposites
Nordin JA, Daud NM,Prajitno DH, Nur H, Hermawan H
Faculty ofBiosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM),Malaysia
HA TCP BCP, 75nm Fepowder 450 micrometer Press at 11.8MPa, pillet with 12 mm diameter, SinteringVacuum 1100 degree C
Immersion Weightloss Pure Fe<Fe-Ha<Fe-BCP<Fe-TCP
Electrochemicalmeasurement: Pure Fe<Fe-Ha<Fe-TCP<Fe-BCP
SOP3. Stentmaterials-dependent macrophage fusion and secretion of inflammatory cytokineand chemokine
Mao L, Kwak M, Xue Q,Lu Y, Niu J, Zhang J, Yuan G, Fan R
School of MaterialsScience and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Primary macrophageson Mg
SOP4. Microstructure,mechanical properties and corrosion behaviour of Mg-3Al-1Zn alloy stent tubes
Hanada K, Huang X,Matsuzaki K
AdvancedManufacturing Research Institute, National Institute of Advanced IndustrialScience and Technology (AIST), Japan
Effect of grainsize on the mechanical properties and corrosion resistance
AZ31 stent tubswith various hcp orientation
The deformabilityin the wall thickness and
The tube withlargely tilted c axis of hcp to the circumferetial direction in an appropriatefor stent application
SOP5. SuLaser surfacestructuring of Mg stent
Demir AG, PrevitaliB, Furlan V
Department ofMechanical Engineering, Politecnico di Milano, Italy
Laser structuringof the stent surface in order to increase adhesion of polymer coating
Laser cutting withproductive nanosecond pulsed laser
Laser cutting with “cold”femtosecond pulsed laser
Surface remelting,with transition, worm, bud, …surface morphology
SOP6. Magnesiumand its alloys – an introduction to their metallurgy and deformation behaviour
Manuel MV
Department ofMaterials Science and Engineering, University of Florida, USA
SOP7. Mechanicalproperties and corrosion behaviour of ZK60 processed by ECAP for biomedicalapplication
Mostaed E, Ge Q,Vedani M, De Oliveira Botelho PA, Zanella C, Deflorian F
Department ofMechanical Engineering, Politecnico di Milano, Milan, Italy
4 passes at 3steps: 250, 200 and 150 degree C
Hot extrusion ofZK60 tube by using UFG billet
SOP8. Effect ofprocess on the properties of biodegradble Mg-2Zn-0.2Mn alloy
Huang N, Zhou SJ, GuoSJ, Wang J
Key Lab. ofAdvanced Materials Technology, Ministry of Education, Southwest JiaotongUniversity, China
Microstructure,degradation, blood compatibility
SOP9. Influence ofdifferent storage durations on the properties of degradable magnesium basedimplants
Bracht K, AngrisaniN, Seitx JM, Eifler R, Weizbauer A, Reifenrath J
Small AnimalClinic, Veterinary University of Hannover, Foundation, Hannover, Germany
Storage ofbiomedical device are invoidable.
Influence ofdifferent storage on Structural changes, biomechanical properties, in vitrodegradation
LAE442
0, 24, 48 weeks
Metallographic andcontrast analysis, three-point bending
No cleardifferences in grain size after 48 weeks
Percentageprecipitate tend to increase with time
In vitro corrosiondecrease 20%
Storage of Mg basedimplants hnas no appreciable effect on implant quality
SOP10. Degradation ofMg-Zn-Ca alloy processed by high pressure torsion for bone implant applicationin simulated body flood
Yue GC, Zhu SJ, WangLG, Ma X, Ji C, Guan SK
School of MaterialsScience and Engineering, Zhengzhou University, 100 Kexue Road 450001,Zhengzhou, China
5 rotations with apressure of 5GPa at room temperature
After HPT, grain sizefrom 80micrometer to 1 micrometer, second phase inside grain -40nm
Pitting corrosionchange into homogeneous corrosion
Higher content ofZn element
SOP11. Corrosion andwear behaviour of Mg-xZn-0.8Zr alloy in simulated body fluid
Liu D, Liu L, Liu Y,Song R, Chen M
School of MaterialsScience and Engineering, Tianjin University of Technology, Tianjin 300384,China
2,3,4,4.5 四个锌含量
3Zn UTS 290MPa,elongation 17.8%
Wear testing in SBFwith stainless steel pin
SOP12.Microstructures and corrosive properties in simulated body fluid of biologicalMg-Zn-Y-Nd alloy by friction stir processing
Guan SK, Zhu SJ, WangLG, Yue GC, Wang J, Jin J
School of MaterialsScience and Engineering, Zhengzhou University, 100 Kexue Road 450001,Zhengzhou, China
Complete uniformfine grain can be obtained
FSP sample showuniform corrosion
SOP13. Selectivelaser melting of biodegradable metals
Jauer L, Meiners W,Poprawe R
FraunhoferInstitute for Laser Technology ILT, Aachen, Germany
Major chanllenges
Small temperaturedifference between melting and evaporation
Reactiviity ofpowder materials
AZ91, WE43,AZ91/beta TCP(5 wt.%)
97..6% 93.8, 97.7density, respectively
Higher strength butless ductility than cast parts
Surface roughness<15 micrometer
Transfer to biodegradableFe-based alloy
SOP14: Effect ofnitrogen on microstructures in biomedical Co-Cr-Mo alloys
Alfirano
MetallurgyEngineering Department, University of Sultan Ageng Tirtayasa, Indonesia
(缺席)
SOP15. Fabrication and bioactivity ofNa2Ti6O13 nanofibers on micro-arc oxidized Ti
Lan Zhang, Yong Han
State KeyLaboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,China
Science 310(2005)1135
SOP16. Relationship between secondary phaseand corrosion properties of biodegradable Mg-based alloys
Idris MH,Bakhsheshi-Rad HR, Lotfabadi AF
Department ofMaterials, Manufacturing and Industrial Engineering, Universiti TeknologiMalaysia, Malaysia
To improve of thebiodegradation resistance Mg-5Ca through the addition of Zn
Mg 99.98, Zn, 99.99%, Mg-32Ca master alloy
Mg-5Ca-3Zn
Alfa-Mg+Mg2Ca+Ca2Mg6Zn3 eutectic
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-10 11:30
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社