实验结果表明,30mT的磁场照射,使小鼠额叶皮层神经细胞膜钠通道电流INa显著增大,且这种增大作用呈现时间依赖性、电压依赖性。结果还表明,30mT恒定磁场作用可使小鼠皮层神经元的INa的稳态激活曲线略微左移,基本没有显著性变化,失活曲线显著性左移,且改变其斜率因子。相比Rosen A D[12]研究的125mT恒定磁场对钠通道的影响,本文30mT对神经细胞钠通道特性的影响更显著,可见,不同的细胞、磁场强度大小及磁场的作用时间会产生不同的实验结果。
磁场的生物刺激作用机制和作用靶点目前尚不明确,仅限于一些假说。磁场对生物细胞的影响是多种多样的,它能够使细胞内电荷运动方向发生改变,使电子或离子不能达到正常的生理功能位置,生物分子之间的亲和力受到破坏,从而抑制细胞周期的正常进行,导致细胞分裂停止。另外,磁场作用亦可促进组织细胞带电颗粒的运动,调整生物分子的液晶结构,改变胞膜的通透性,促进新陈代谢过程,加强组织细胞的生长[17]。另一方面,在生物膜上反磁性分子是以高度规则方式排列,并以平行的反磁体矢量连接发挥作用。磁场的作用也可能导致各向异性反磁性分子的再定位[12]。
本实验从细胞膜电压门控钠离子通道角度研究磁场的生物刺激作用。从实验结果得出,30mT恒定电磁场可能导致了细胞膜上离子通道的电荷的运动或者反磁性分子的排列,从而导致了钠通道的离子通道特性的改变。本实验结果提示弱磁场的生物刺激作用与细胞膜离子通道特性及通道构形变化有关,但仍需进一步从分子生物学及细胞信号转导方面进行分子层面的理论和实验验证。
参考文献
[1] Shupak N M, Prato F S, Thomas A W. Human exposure to a specific pulsed magnetic field: effects on thermal sensory and pain thresholds[J]. Neuroscience Letters, 2004,363:157-162.
[2] Shupak N M, Hensel J M, Cross-Mellr S K, et al. Analgesic and behavioral effects of a 100 μT specific pulsed extremely low frequency magnetic field on control and morphine treated CF-1 mice[J]. Neuroscience Letters, 2004,354: 30-33.
[3] Williams C D, Markov M S, Hardman W E, et al. Therapeutic electromagnetic field effects on angiogenesis and tumor growth[J]. Anticancer Research, 2001,21(6A): 3887-3891.
[4] Pang L J, Baciu C, Traitcheva N, et al. Photodynamic effect on cancer cells influenced by electromagnetic fields[J]. Journal of Photochemistry and Photobiology B-biology, 2001,64(1): 21-26.
[5] Cornaglia A L, Casasco M, Riva F, et al. Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct[J]. European Journal of Histochemistry, 2006, 50(3): 199-203.
[6] Yhomas A W, White K P, Drost D J, et al. A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200 μT) magnetic field: effects on normal standing balance[J]. Neuroscience Letters, 2001, 309: 17-20.
[7] 张杰, 李振华, 孙晋浩, 等. 恒定磁场对Schwann细胞氧化损伤的保护作用. 山东大学学报(医学版), 2007, 45(3):229-232. Zhang J, Li Z H, Sun J H, et al. Protective Effects of the Invarible Magnetic Field on Oxidative Injured Schwann Cells. Journal of Shandong Universeity(Health Sciences), 2007, 45(3):229-232.
[8] Sarkar S, Kumari B, Ali S. Effect of radiofrequency electromagnetic field on human DNA[J]. Defence Science Journal, 2006, 56(2):199-208.
[9] Pavicic I, Trosic I. Influence of 864 MHz electromagnetic field on growth kinetics of established cell line[J]. Biologia, 2006, 61(3): 321-325.
[10] Eguchi Y, Ogiue-Ikeda M, Ueno S. Control of orientation of rat Schwann cells using an 8-T static magnetic field[J]. Neuroscience Letters, 2003, 351: 130-132.
[11] Pacini S, Vannelli G B , Barni T, et al. Effect of 0.2T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability[J]. Neuroscience Letters, 1999, 267:185-188.
[12] Rosen A D. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells[J]. Bioelectromagnetics, 2003, 24: 517-523.
[13] Shen J F, Chao Y L, Du L. Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons[J]. Neuroscience Letters, 2007, 415:164-168.
[14] Rosen A D. Mechanism of action of moderate-intensity static magnetic fields on biological systems[J]. Cell Biochemistry and Biophysics, 2003, 39(2):163-173.
[15] Petrov E, Martinac B. Modulation of channel activity and gadolinium block of MscL by static magnetic fields[J]. European Biophysics Journal with Biophysics Letters, 2007, 36:95-105.
[16] Zhang C F, Yang P. Zinc-induced aggregation of A?(10-21) potentiates its action on voltage-gated potassium channel[J]. Biochemical and Biophysical Research Communications, 2006, 345(1):43-49.
[17] 丘冠英,彭银祥,生物物理学[M],武汉:武汉大学出版社,2000,236-238. Qiu G Y, Peng Y X. Biophysics[M]. Wuhan: Wuhan University Press, 2000, 236-238.