xiaokeshengming的个人博客分享 http://blog.sciencenet.cn/u/xiaokeshengming

博文

《自然—生物技术》:哈佛大学尹鹏团队发明质谱流式信号放大技术,大幅提高单细胞及空间蛋白表位分析灵敏度

已有 204 次阅读 2024-7-29 22:31 |系统分类:博客资讯

北京时间2024年7月29日17时,美国哈佛大学Wyss研究所尹鹏教授(通讯作者)、伦小康博士、盛宽玮博士(共同第一作者)等研究人员在Nature Biotechnology期刊上发表题为“Signal amplification by cyclic extension enables high-sensitivity single-cell mass cytometry”的研究论文.


论文阐述了通过设计DNA动态探针实现对质谱流式技术(mass cytometry)中抗原表位金属同位素标记信号的高效放大,解决了质谱流式分析中的灵敏度瓶颈问题。ACE可同时放大30种以上蛋白表位信号。应用在悬浮质谱流式和成像质谱流式(imaging mass cytometry或IMC)中,ACE皆可大幅提升低丰度蛋白信号检测的灵敏度及准确性。


该研究其他合作者包括麻省理工学院Koch研究所Michael Yaffe教授团队、多伦多大学Lunenfeld-Tanenbaum研究所Hartland Jackson教授团队及哈佛大学Wyss研究所Donald Ingber教授团队。

图片

质谱流式细胞术可在数百万个单细胞中同时采样并量化分析50多种蛋白质或蛋白质修饰水平。应用质谱流式可从全新的角度判别细胞种类、细胞表型,评估其功能状态和异质性以研究疾病发生和发展的机制。然而,作为一种新兴单细胞蛋白组方法,质谱流式因其技术特性也存有一些功能上的不足之处。目前该技术最大的瓶颈在于其灵敏度的极限,在单细胞中的每种抗原表位需要累积上百个金属标签标记的抗体才可在质谱流式分析中检测到特异性信号。灵敏度不足的问题,使得一些在人类疾病中至关重要的低丰度蛋白,如大量的转录因子、一部分细胞表面受体蛋白以及某些与特定功能相关的磷酸化位点难以被准确分析。在对小体积细胞,例如免疫细胞和微生物细胞的研究中,质谱流式在技术上则更具挑战性。而之前在多个不同实验室进行的放大质谱流式信号的尝试由于信噪比低、放大效果不强、可控性差等问题并没有获得显著效果。如何在不影响信噪比的情况下对质谱流式进行信号放大是一直以来亟待解决的问题。

图片

图1. ACE技术流程示意图

哈佛大学Wyss研究所伦小康博士、盛宽玮博士等研究人员运用独特的DNA动态探针设计方法,创立了单链DNA循环延伸信号放大(Amplification by Cyclic Primer Extension或ACE)技术,实现了同时对多通道抗原表位信号的高信噪比高效放大,并应用于质谱流式技术上以大幅提高其灵敏度。ACE利用超短DNA序列作为起始探针(initiator)标记抗体并对胞内靶蛋白进行染色(图1)。在低温条件下,反应体系内的延伸探针(extender,含有两个相邻的起始探针互补序列)可互补结合在起始探针上,体系中的DNA聚合酶应用延伸探针为模版延长起始探针。提高体系温度后,延伸探针从延长过起始探针上解离,此时一个反应循环结束。当体系温度再次降低时,下一个延伸循环开始,起始探针进一步被延长。通过对起始探针序列的温控循环延伸,ACE可快速复制金属检测探针(detector)结合位点,引入检测探针后,单个抗体所携带的金属同位素标记物数量大幅提升。为提升DNA结构的热稳定性,该团队又结合3-cyanovinylcarbazole phosphoramidite (CNVK)紫外交联方法将携带金属标记的检测探针共价结合在延伸后的起始探针上,使得检测探针在质谱流式仪内高温环境中不易解离(图1)。线型ACE(linear ACE)信号放大技术可平均提升信号13倍(图2)。但当分析极低丰度蛋白的单细胞信号或微生物单细胞蛋白信号需要更强信号时,可在线型ACE基础上应用分支ACE(branching ACE)以达到对抗原信号的500倍以上的放大。为配合质谱流式多维度蛋白表位分析特点,该团队通过设计正交DNA探针序列实现了对33种蛋白表位互不干扰的同时信号放大。

图片

图2. 应用ACE逐级提高质谱流式抗原表位信号

ACE技术建立后,团队首先将其应用与分析上皮-间质转化(EMT)和间质-上皮转化(MET)过程中的分子调控机制。通过对32个上皮和间质标记物、信号分子和转录因子的单细胞分析,将单个小鼠乳腺癌细胞从上皮状态到间质状态再回到上皮状态的转化过程进行时间重构,精准的展示细胞如何通过调节关键转录因子如Zeb-1和Snail/Slug的数量变化来驱动了EMT和MET分子程序。

在第二个应用中,团队聚焦于单个T细胞胞内磷酸化信号网络。由于T细胞体积较小,在单细胞分辨率下每种磷酸化位点的表位数量有限,所以此前针对单个T细胞信号网络反应异质性的研究一直较难开展。团队应用ACE同时放大T细胞受体(TCR)信号网络内的30种关键磷酸化位点(图3),研究样本中T细胞在受到外部信号刺激时的胞内磷酸化网络特异性激活状态是如何分别调控介导应激、炎症、细胞增殖等反应的。应用该技术,团队分析了“组织损伤诱导T细胞麻痹”的分子信号机理,利用从手术患者获取的“术后引流液”(POF)样本刺激T细胞,并捕捉TCR信号网络的动态特征,揭示出导致部分CD4+ T细胞停止分裂并引起免疫抑制的胞内信号网络变化。

图片

图3. 应用ACE技术分析T细胞胞内信号网络动态变化(详情参见正文)

最后,团队使用ACE结合成像质谱流式(Imaging mass cytometry或IMC)对人体肾脏组织切片中的蛋白表位进行高维度空间分析。通过检查从一名多囊肾病患者获得的肾皮质切片并对经信号放大后的20种肾脏标记物的空间表位分析,团队发现了存在于肾皮质部位细胞和组织结构的新病理特征:与组织修复相关的干细胞标记物Nestin在肾小球中的不均匀表达可能意味着组织的不同部位可能同时经历不同的病理阶段。

ACE质谱流式信号放大技术是单细胞蛋白分析中一项革命性的突破。这套独特的生物技术在生物医学的各个层面都有着广泛的应用前景,尤其可将单细胞高维蛋白表位定量分析扩展到之前由于技术限制而从未涉及到的低丰度蛋白组。另外,结合成像质谱流式IMC,可在未来实现基于ACE信号放大的超分辨率空间蛋白组学成像分析。

文章第一作者伦小康博士即将在明尼苏达大学医学院建立单细胞系统生物学实验室,欢迎对单细胞蛋白组学,癌症系统生物学,以及创新生物技术感兴趣的同学加入。实验室网站lun.umn.edu,邮箱地址xlun@umn.edu,微信号xiaokanglun。

相关论文信息:

https://doi.org/10.1038/s41587-024-02316-x

编辑 |余 荷

排版| 王大雪

欲知更多内容,敬请围观小柯机器人频道:

http://paper.sciencenet.cn/AInews/
图片
“小柯生命”是“小柯”系列学术公众号之一,主要介绍生命科学领域顶级学术期刊最新论文信息。“小柯”是一个科学新闻写作机器人,由中国科学报社联合北大团队研发而成。新闻由“小柯”独立完成,经领域专家和科学编辑双重人工审校和信息补充。





https://blog.sciencenet.cn/blog-3423233-1444320.html

上一篇:《自然》:清华大学闫创业/袁亚飞团队揭示去甲肾上腺素转运蛋白再摄取与抑制的分子基础
收藏 IP: 61.135.229.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-7-30 02:16

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部