Ouariel的个人博客分享 http://blog.sciencenet.cn/u/Ouariel

博文

《自动化学报》13篇文章入选2025年度“领跑者5000”顶尖论文

已有 1181 次阅读 2025-11-4 10:47 |系统分类:博客资讯

近期,2025年度领跑者5000-中国精品科技期刊顶尖学术论文入选名单发布,《自动化学报》有以下13篇论文入选(按发表时间排序)。

 

基于区块链的联邦学习: 模型、方法与应用

近年来, 人类社会快速步入大数据时代, 数据安全与隐私保护已成为发展大数据生态及相关数字经济的关键问题. 联邦学习(Federated learning)作为分布式机器学习的一种新范式, 致力于在保护数据隐私的同时从分布式本地数据集中训练全局模型, 因而获得了广泛和深入的研究. 然而, 联邦学习体系面临的中心化架构、激励机制设计和系统安全等技术挑战仍有待进一步研究, 而区块链被认为是应对这些挑战的有效解决方案, 并已成功应用于联邦学习的许多研究和实践场景. 在系统性地梳理现阶段区块链与联邦学习集成研究成果的基础上, 提出基于区块链的联邦学习(BeFL)概念模型, 阐述其中的若干关键技术、研究问题与当前研究进展, 探讨该领域的应用场景以及有待进一步研究的关键问题, 并讨论未来发展的潜在方向, 致力于为构建去中心化和安全可信的数据生态基础设施、促进数字经济与相关产业的发展提供有益的参考与借鉴.

李程, 袁勇, 郑志勇, 杨东, 王飞跃. 基于区块链的联邦学习: 模型、方法与应用. 自动化学报, 2024, 50(6): 1059−1085.

基于事件触发机制的多自主水下航行器协同路径跟踪控制

针对考虑外部海洋环境扰动和内部模型不确定性的多自主水下航行器(AUV), 研究其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计一种基于事件触发机制(ETM)的协同通信策略; 然后, 针对模型不确定性和海洋环境扰动问题, 设计一种基于事件触发机制的线性扩张状态观测器(ESO)来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下, 降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别验证了闭环系统是输入状态稳定的且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性.

王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华. 基于事件触发机制的多自主水下航行器协同路径跟踪控制. 自动化学报, 2024, 50(5): 1024−1034.

 

兵棋推演的智能决策技术与挑战

近年来, 以人机对抗为途径的智能决策技术取得了飞速发展, 人工智能(AI)技术AlphaGoAlphaStar等分别在围棋、星际争霸等游戏环境中战胜了顶尖人类选手. 兵棋推演作为一种人机对抗策略验证环境, 由于其非对称环境决策、更接近真实环境的随机性与高风险决策等特点, 受到智能决策技术研究者的广泛关注. 通过梳理兵棋推演与目前主流人机对抗环境(如围棋、德州扑克、星际争霸等)的区别, 阐述了兵棋推演智能决策技术的发展现状, 分析了当前主流技术的局限与瓶颈, 对兵棋推演中的智能决策技术研究进行了思考, 期望能对兵棋推演相关问题中的智能决策技术研究带来启发.

尹奇跃, 赵美静, 倪晚成, 张俊格, 黄凯奇. 兵棋推演的智能决策技术与挑战. 自动化学报, 2023, 49(5): 913−928.

 

自适应特征融合的多模态实体对齐研究

多模态数据间交互式任务的兴起对于综合利用不同模态的知识提出了更高的要求, 因此融合不同模态知识的多模态知识图谱应运而生. 然而, 现有多模态知识图谱存在图谱知识不完整的问题, 严重阻碍对信息的有效利用. 缓解此问题的有效方法是通过实体对齐进行知识图谱补全. 当前多模态实体对齐方法以固定权重融合多种模态信息, 在融合过程中忽略不同模态信息贡献的差异性. 为解决上述问题, 设计一套自适应特征融合机制, 根据不同模态数据质量动态融合实体结构信息和视觉信息. 此外, 考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果, 本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块. 在多模态实体对齐任务上的实验结果表明, 提出的多模态实体对齐方法的性能优于当前最好的方法.

郭浩, 李欣奕, 唐九阳, 郭延明, 赵翔. 自适应特征融合的多模态实体对齐研究. 自动化学报, 2024,50(4): 758−770.

 

高超声速变外形飞行器建模与固定时间预设性能控制

以一种折叠式高超声速变外形飞行器(HMV)为研究对象, 综合考虑变形引起的气动特性、动力学特性的动态变化和模型不确定性、外部干扰的影响, 开展飞行器建模与固定时间预设性能控制方法研究. 首先, 建立高超声速变外形飞行器的运动模型和姿态控制模型; 然后, 采用固定时间干扰观测器实现对模型不确定性和外部干扰构成的复合总扰动的精确估计, 并设计一种新型固定时间预设性能函数以定量描述期望性能约束, 在此基础上, 基于预设性能控制架构并结合动态面控制技术设计预设性能姿态控制器, 利用Lyapunov稳定性理论证明闭环系统的固定时间稳定性; 最后, 通过数值仿真验证所提出方法的有效性和鲁棒性.

曹承钰, 李繁飙, 廖宇新, 殷泽阳, 桂卫华. 高超声速变外形飞行器建模与固定时间预设性能控制. 自动化学报, 2024,50(3): 486−504.

 

融合多策略的黄金正弦黑猩猩优化算法

针对黑猩猩优化算法(ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想, 更新个体位置, 提高算法对局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性; 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.

刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法. 自动化学报, 2023,49(11): 2360−2373.

 

基于终端诱导强化学习的航天器轨道追逃博弈

针对脉冲推力航天器轨道追逃博弈问题, 提出一种基于强化学习的决策方法, 实现追踪星在指定时刻抵近至逃逸星的特定区域, 其中两星都具备自主博弈能力. 首先, 充分考虑追踪星和逃逸星的燃料约束、推力约束、决策周期约束、运动范围约束等实际约束条件, 建立锥形安全接近区及追逃博弈过程的数学模型; 其次, 为了提升航天器面对不确定博弈对抗场景的自主决策能力, 以近端策略优化 (PPO) 算法框架为基础, 采用左右互搏的方式同时训练追踪星和逃逸星, 交替提升两星的决策能力; 在此基础上, 为了在指定时刻完成追逃任务, 提出一种终端诱导的奖励函数设计方法, 基于CW方程预测两星在终端时刻的相对误差, 并将该预测误差引入奖励函数中, 有效引导追踪星在指定时刻进入逃逸星的安全接近区. 与现有基于当前误差设计奖励函数的方法相比, 所提方法能够有效提高追击成功率. 最后, 通过与其他学习方法仿真对比, 验证提出的训练方法和奖励函数设计方法的有效性和优越性.

耿远卓, 袁利, 黄煌, 汤亮. 基于终端诱导强化学习的航天器轨道追逃博弈. 自动化学报, 2023,49(5): 974−984.

 

基于改进多隐层极限学习机的电网虚假数据注入攻击检测

虚假数据注入攻击(FDIA)严重威胁了电力信息物理系统(CPS)的状态估计, 而目前大多数检测方法侧重于攻击存在性检测, 无法获取准确的受攻击位置. 故本文提出了一种基于灰狼优化(GWO)多隐层极限学习机(ML-ELM)的电力信息物理系统虚假数据注入攻击检测方法. 所提方法将攻击检测看作是一个多标签二分类问题, 不仅将用于特征提取与分类训练的极限学习机由单隐层变为多隐层, 以解决极限学习机特征表达能力有限的问题, 且融入了具有强全局搜索能力的灰狼优化算法以提高多隐层极限学习机分类精度和泛化性能. 进而自动识别系统各个节点状态量的异常, 获取受攻击的精确位置. 通过在不同场景下对IEEE-1457节点测试系统上进行大量实验, 验证了所提方法的有效性, 且分别与极限学习机、未融入灰狼优化的多隐层极限学习机以及支持向量机(SVM)相比, 所提方法具有更精确的定位检测性能.

席磊, 何苗, 周博奇, 李彦营. 基于改进多隐层极限学习机的电网虚假数据注入攻击检测. 自动化学报, 2023,49(4): 881−890.

 

机器人感知与控制关键技术及其智能制造应用

智能机器人在服务国家重大需求, 引领国民经济发展和保障国防安全中起到重要作用, 被誉为制造业皇冠顶端的明珠”. 随着新一轮工业革命的到来, 世界主要工业国家都开始加快机器人技术的战略部署. 而智能机器人作为智能制造的重要载体, 在深入实施制造强国战略, 推动制造业的高端化、智能化、绿色化过程中将发挥重要作用. 本文从智能机器人的感知与控制等关键技术的视角出发, 重点阐述了机器人的三维环境感知、点云配准、位姿估计、任务规划、多机协同、柔顺控制、视觉伺服等共性关键技术的国内外发展现状. 然后, 以复杂曲面机器人三维测量、复杂部件机器人打磨、机器人力控智装配等机器人智能制造系统为例, 阐述了机器人的智能制造的应用关键技术, 并介绍了工程机械智能化无人工厂、无菌化机器人制药生产线等典型案例. 最后探讨了智能制造机器人的发展趋势和所面临的挑战.

王耀南, 江一鸣, 姜娇, 张辉, 谭浩然, 彭伟星, 吴昊天, 曾凯. 机器人感知与控制关键技术及其智能制造应用. 自动化学报, 2023,49(3): 494−513.

 

基于旋转框精细定位的遥感目标检测方法研究

遥感图像中的目标往往呈现出任意方向排列, 而常见的目标检测算法均采用水平框检测, 并不能满足这类场景的应用需求. 因此提出一种旋转框检测网络R2-FRCNN. 该网络利用粗调与细调两阶段实现旋转框检测, 粗调阶段将水平框转换为旋转框, 细调阶段进一步优化旋转框的定位. 针对遥感图像存在较多小目标的特点, 提出像素重组金字塔结构, 融合深浅层特征, 提升复杂背景下小目标的检测精度. 此外, 为了在金字塔各层中提取更加有效的特征信息, 在粗调阶段设计一种积分与面积插值法相结合的感兴趣区域特征提取方法, 同时在细调阶段设计旋转框区域特征提取方法. 最后在粗调和细调阶段均采用全连接层与卷积层相结合的预测分支, 并且利用SmoothLn作为网络的回归损失函数, 进一步提升算法性能. 提出的网络在大型遥感数据集DOTA上进行评估, 评估指标平均准确率达到0.7602. 对比实验表明了R2-FRCNN网络的有效性.

朱煜, 方观寿, 郑兵兵, 韩飞. 基于旋转框精细定位的遥感目标检测方法研究. 自动化学报, 2023,49(2): 415−424.

 

基于KnCMPSO算法的异构无人机协同多任务分配

随着无人机(UAV)技术的广泛应用和执行任务的日益复杂, 无人机多机协同控制面临着新的挑战. 以无人机总飞行距离和任务完成时间为优化目标, 同时考虑异构无人机类型、任务执行时序等多种实际约束, 构建基于多种约束条件的异构无人机协同多任务分配模型. 该模型不仅包含混合变量, 同时还存在多个复杂的约束条件, 因此, 传统的多目标优化算法并不能有效地处理混合变量及对问题空间进行搜索并生成满足多种约束条件的可行解. 为高效求解上述模型, 提出一种基于拐点的协同多目标粒子群优化算法(KnCMPSO), 该算法引入基于拐点的学习策略来更新外部档案集, 在保证收敛性的同时增加种群的多样性, 使算法能搜索到更多可行的任务分配结果; 并基于二进制交叉方法, 引入基于学习的粒子更新策略来提升算法的收敛性及基于区间扰动的局部搜索策略以提升算法的多样性. 最后通过在四组实例上的仿真实验验证了所提算法在求解异构无人机协同多任务分配问题上的有效性.

王峰, 黄子路, 韩孟臣, 邢立宁, 王凌. 基于KnCMPSO算法的异构无人机协同多任务分配. 自动化学报, 2023,49(2): 399−414.

 

无人机反应式扰动流体路径规划

针对复杂三维障碍环境, 提出一种基于深度强化学习的无人机(UAV) 反应式扰动流体路径规划架构. 该架构以一种受约束扰动流体动态系统算法作为路径规划的基本方法, 根据无人机与各障碍的相对状态以及障碍物类型, 通过经深度确定性策略梯度算法训练得到的动作网络在线生成对应障碍的反应系数和方向系数, 继而可计算相应的总和扰动矩阵并以此修正无人机的飞行路径, 实现反应式避障. 此外, 还研究了与所提路径规划方法相适配的深度强化学习训练环境规范性建模方法. 仿真结果表明, 在路径质量大致相同的情况下, 该方法在实时性方面明显优于基于预测控制的在线路径规划方法.

吴健发, 王宏伦, 王延祥, 刘一恒. 无人机反应式扰动流体路径规划. 自动化学报, 2023,49(2): 272−287.

 

基于改进YOLOv3算法的公路车道线检测方法

针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(mAP)95%, 检测速度可达50/s, YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法.

崔文靓, 王玉静, 康守强, 谢金宝, 王庆岩, MIKULOVICH Vladimir Ivanovich. 基于改进YOLOv3算法的公路车道线检测方法. 自动化学报, 2022,48(6): 1560−1568



https://blog.sciencenet.cn/blog-3291369-1508815.html

上一篇:全息梯度差分卷积的图像分类网络
下一篇:《自动化学报》2025年51卷10期目录分享
收藏 IP: 150.242.79.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-12-6 00:23

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部