TickingClock的个人博客分享 http://blog.sciencenet.cn/u/TickingClock

博文

Cell Discovery:恩施碎米芥基因组揭示超级富硒和耐硒的分子机制

已有 2124 次阅读 2021-11-13 08:51 |个人分类:每日摘要|系统分类:论文交流

The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance

第一作者Chuying Huang

第一单位恩施州中心医院

第一通讯Chuying Huang


 Abstract 


背景回顾Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. 


提出问题Despite its critical importance, genomic information of this species is limited. 


主要研究:Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. 


结果1-多组学揭示耐硒机制To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomestranscriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. 


结果2-染色体互作变化Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. 


结果3-Se处理前后的染色体区室变化Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. 


结论:This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.


 摘 要 

恩施碎米芥是一个比较知名的超级富硒植物。硒是一种与很多健康益处相关的必需微量元素。尽管恩施碎米芥具有非常重要的价值,但是有关其基因组信息仍然未见报道。本文中,作者报道了恩施碎米芥的染色体层级基因组组装,包含了16条染色体,大小约为443.4Mb,scaffold N50为24Mb。为了阐释恩施碎米芥的硒耐受性和超级富硒机制,作者综合分析了其基因组、转录组以及代谢组的多组学分析。结果发现,类黄酮、谷胱甘肽和木质素生物合成途径可能在保护恩施碎米芥免受硒胁迫的过程中发挥重要作用。染色质互作模式的Hi-C分析显示,恩施碎米芥的染色质分隔成了A和B两个隔室,并且每个染色体的两个端粒之间的强相互作用与组蛋白修饰、表观标记、DNA甲基化和RNA丰度相关。硒处理能够在隔室层面上影响恩施碎米芥的3D染色质结构。硒处理后与具有隔室变化的基因主要参与了硒化合物的代谢,而在含有拓扑结构上绝缘结构域的区域中的基因则参与了细胞对硒的响应、硒结合以及类黄酮的生物合成。本文所报道的多组学研究为进一步理解恩施碎米芥的耐硒和超级富硒机制提供了分子视野。


doi: https://doi.org/10.1038/s41421-021-00286-x


Journal: Cell Discovery

Published date: August 10, 2021



https://blog.sciencenet.cn/blog-3158122-1312203.html

上一篇:Nature Communications:CLV3介导的转录和翻译后调控确保了一个稳健的WUS梯度
下一篇:Science:拟南芥高质量基因组
收藏 IP: 121.248.145.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-28 10:47

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部