bill12345678的个人博客分享 http://blog.sciencenet.cn/u/bill12345678

博文

窦华书: 为什么流动弯曲的地方更容易发生湍流? 精选

已有 7838 次阅读 2023-2-13 07:58 |系统分类:科普集锦

image.png

图1 矩形截面弯管各个截面上的能量梯度函数K值的分布 (Dou et al 2014).

(一)牛顿流动:

弯曲的地方更容易发生湍流的原因,是因为弯曲的地方,横截面上产生了压力梯度(离心力等因素引起),这样横截面上产生了更大的机械能梯度(机械能梯度=动能梯度+压力梯度+位能梯度),而且更不均匀 ,还容易诱导二次流动 (图1)。这样,弯曲流道横截面上机械能梯度分布更加复杂。因此,许多情况下,由于弯曲流道横截面上机械能梯度分布的畸变,弯曲的地方更容易发生湍流,这也是我们经常在弯管流动等装置中看到的情况。

在平直流动和大多数流动中,一般都用一个特征雷诺数来表征流动的状态,或判断层流或湍流。在等截面的弯管流动中,通常用一个无因次数,Dean number 来表征弯曲曲率的影响。一般来说,雷诺数越大,越容易产生湍流,过去100多年来,雷诺数是判定层流或湍流的准则。

根据窦华书的能量梯度理论,湍流的产生,除扰动外,唯一地取决于机械能的梯度,而不是其它因素。湍流的产生不取决于雷诺数,而是取决于机械能的梯度雷诺数的影响以及其他因素的影响,最终都是通过影响了机械能梯度的变化而对湍流产生而起作用。流场中总的机械能梯度的方向与速度矢量的夹角的正切值,被定义为能量梯度函数,它是一个无因次的场变量,其数值大小与全局雷诺数成正比,对牛顿流动,其物理意义是一个当地雷诺数或局部雷诺数 (local Reynolds number)

湍流的产生为什么不取决于雷诺数,因为雷诺数不能反映湍流产生的本质原因及物理机理。在实际应用中存在反例,一个突出的问题是,这些反例并没有引起这个领域的湍流专家注意,而把雷诺数当做至高无上的湍流产生的决定因素,这也是140年来湍流问题没有解决的主要原因之一。本文要介绍的两个反例,第一个反例是牛顿流动中的自由涡流动。第二个反例是雷诺数接近于零的非牛顿流动(粘弹流动)。第一个例子中,雷诺数非常非常高(比如Re>10^8),也不会产生湍流。第二个例子中,雷诺数接近于零(Re<1)也能产生湍流。然而,如果采用窦华书的能量梯度理论,来分析湍流转捩,这两个反例就不存在了,并且就没有任何反例了。

在旋涡流动中,存在这样的情况,弯曲的地方不一定比平直的地方更容易产生湍流,要理解这个问题,必须从湍流是怎么产生的来考虑,这样大家就清楚了。因为湍流转捩或者湍流产生,不取决于雷诺数,而是机械能梯度。

第一个反例:一个旋转圆柱引起的外部流动,是弯曲流动,可是它无论速度多么大,无论雷诺数多么高,永远也不会产生湍流。这是因为这个旋转圆柱引起的速度场是一个自由涡流动,在垂直于流线方向上的机械能梯度为零,而且整个流场的机械能是一个常数。根据能量梯度理论,能量梯度函数值为零,流动是稳定的,任何扰动都会被吸收掉。因此,它不会引起任何失稳或引起湍流 (图2)。

freevortex.png

图2 自由涡流动,是一个均匀的机械能场

然后,我们就容易理解龙卷风为什么如此稳定,因为龙卷风的涡核的外部是一个体积非常大的自由涡,流动是层流的,流动非常稳定,旋涡不容易被破坏,尽管雷诺数非常非常大(一般>10^8)。通过流动可视化可以容易看出,涡核内部是很强的湍流运动。虽然涡核内部是强湍流流场,可是它被外部强大的稳定的自由涡包围 (图3)。

tornado2.jpeg

图3  龙卷风(tornado, wikipedia)

一个更一般的问题,为什么对不同几何形状的流动,产生湍流的临界雷诺数不同?为什么不是一个统一的什么临界常数?有没有人考虑过这个事情? 从来没有。为什么我们烧水时,无论采用什么几何形状的容器,水达到沸腾的温度,都相同呢?都是100度呢? 关于湍流产生或湍流转捩的临界条件,我们应该找到这样的一个度量,一个统一的标准或准则,这就是作者发现的 “奇点”的出现。采用作者提出的”奇点“准则,什么问题都可以解决了。例如,上面的自由涡流动高雷诺数也不能出现湍流,就是因为不能产生”奇点“。

(二)由此引出下面的类比:

对人的生命的死亡,所有的疾病,所有的交通事故,所有的因年龄原因引起的器官功能症状,所有的所有,都是最后通过影响了”心肺功能“,导致 ”心肺功能“失效,而宣布生命死亡。心肺功能一停止,生命就结束。所以医生检测病人是否还活着,是同时看”呼吸“和血液的”脉搏“。心肺功能“失效就是医生判断生命死亡的唯一准则。

(这里一个有意思的事情是生命靠流体,"心"是泵血,是液体;"肺"是泵气,是气体。它们都是输送流体。所以生命科学研究离不开流体力学)。

对所有流体流动,雷诺数的影响以及所有的所有影响,都是最后通过影响了”机械能的梯度“,而影响发生湍流。当流场中的机械能梯度方向一旦与速度矢量正交(奇点出现),就发生湍流。这就是湍流转捩的统一标准,不管什么样的几何形状。如果以雷诺数作为准则,能够证明这个准则的例子很多,否则也不会让人们用了100多年,但是用雷诺数作为湍流转捩的准则就存在若干个反例 (本文只举出2例)。

(三)非牛顿流动:

上面第一段讲的是对牛顿流动说的。对于非牛顿流动来说(流变学研究范围),除了上述原因外,还有附加的弹性正应力的影响,它会改变压力梯度,而导致机械能梯度的改变。弯曲流道粘弹流动中,零雷诺数产生湍流的例子,给出了否定雷诺数准则的另一个反例。

第二个反例: 在弯曲流道的表面附近,流体的粘弹性导致弯曲的地方产生附加的压力梯度,从而更容易产生湍流。粘弹性流动,雷诺数很小,接近于零,可是弹性在弯曲的地方,产生正应力而导致垂直于表面的压力梯度,引起了机械能梯度的变化,导致”奇点“出现,而诱发湍流,称为粘弹湍流。这个结论,理论、实验、计算都是一致的 [1-10]。采用作者所提出的能量梯度理论及其”奇点“准则,成功地解决了零雷诺数产生湍流的问题。粘弹流动零雷诺数也能产生湍流,就是因为其机械能梯度能够产生”奇点“。 粘弹湍流具有牛顿湍流的全部特征,如速度涨落及阻力增长等等。自从2000年以色列科学家在Nature发表了那篇具有历史意义的文章以来,引起了粘弹性湍流的研究的热潮。

image.png

图4 非牛顿流体中弹性正应力产生的爬杆效应。

粘弹流动在弯曲管道里的流动,因为惯性力很小,离心力产生的压力梯度很小,但是,粘弹正应力产生的压力梯度却很大。当Deborah数增大时,这个压力梯度非常大。例如,在一容器内,当你快速搅动具有粘弹性的液体时,液体弯曲运动沿着径向产生的正应力差,将会驱动流体沿着搅动杆上升,这种现象称为爬杆效应(图4)。这是由于液体弹性引起的紧贴着杆子附近的流体的压力会升高,为了达到整个容器内的压力平衡,这部分液体就要上升。

需要指出的是,在非牛顿流体中,随着流体组分的变化,以及雷诺数和Deborah数的变化,流体弹性有时会引起湍流产生的延迟,有时会加速湍流的产生。因此,我们可以在牛顿流体中添加其他材料,改变其本构特性,对流动进行控制,如通过延迟湍流产生进行流动减租,或通过加速湍流产生进行强化热传导。

(四)交叉学科研究助力湍流:

作者正是由于从事流变学的研究,通过发现粘弹应力在曲面上产生的压力梯度,导致流场中出现奇点,发现了湍流产生的物理机理,建立了湍流产生的理论:能量梯度理论 [1-4]。

作者1996年,在澳大利亚悉尼大学从事非牛顿流动研究(粘弹流动和纤维悬浮液),遇到了不稳定流动的问题。恰恰在解决问题的关键时刻,读到了以色列科学家1998年的粘弹流动失稳的论文;2000年,第一时间读到了他们Nature2000 的弹性湍流实验研究的论文(Re=0),立刻激发了作者提出了”不可压缩中所有的湍流都是机械能梯度所引“ 的创新思想,并通过Navier-Stokes方程推导出了能量梯度函数的精确表达式。为此,作者把此理论命名为 能量梯度理论 [2]。

如果不是以色列科学家Nature2000那篇论文,发现雷诺数为零的流动也能产生湍流的启发(从此产生了对雷诺数的怀疑),作者有可能,至今也没有能够建立起能量梯度理论,湍流产生的秘密直到今天也揭示不了。

参考文献

1. Dou, H.-S., Origin of Turbulence-Energy Gradient Theory, 2022, Springer. https://link.springer.com/book/10.1007/978-981-19-0087-7 (全书下载地址).

2. Dou, H.-S., Energy Gradient Theory of Hydrodynamic Instability, The Third International Conference on Nonlinear Science, Singapore, 30 June-2 July, 2004. 链接如下: https://arxiv.org/abs/nlin/0501049

3. 为什么人体主动脉血管里血液流动会由层流变为湍流? https://blog.sciencenet.cn/blog-3057857-1356764.html

4. 窦华书:我是怎样创立能量梯度理论的? https://mp.weixin.qq.com/s/tujupDNxbClLCFXGBKJVIA

5.科学网-海森堡的第二个问题终于有了答案,窦华书的博文。

https://blog.sciencenet.cn/blog-3057857-1361491.html 或者 https://mp.weixin.qq.com/s/xW20mnE7jpDLL68PcKDSsg

6.新书访谈,专访《湍流的起源能量梯度理论》作者窦华书教授。https://mp.weixin.qq.com/s/unFxknnohDUwp11150OfZw

7.窦华书教授成功破解了百年湍流难题,中国教育日报网。http://chinaedutech.com/dfjy/2022/1117/1327.html 或者  https://mp.weixin.qq.com/s/1nh4SLMaLHC511d8uDeI8Q

8.窦华书教授在纳维-斯托克斯方程问题上取得新进展,浙江理工大学官网新闻。https://news.zstu.edu.cn/info/1033/41169.htm 或者 https://mp.weixin.qq.com/s/QfC9d4Cn5ujzUMltyhvQyg 

9. 湍流是怎样产生的最新研究进展!https://blog.sciencenet.cn/blog-3057857-1341235.html

10.千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明,

https://blog.sciencenet.cn/blog-3057857-1337452.html




https://blog.sciencenet.cn/blog-3057857-1375993.html

上一篇:窦华书:我是怎样创立能量梯度理论的 (第二部分)
下一篇:学术报告:Navier-Stokes方程解的存在性和光滑性
收藏 IP: 122.235.221.*| 热度|

17 王安良 郑永军 尤明庆 崔锦华 檀成龙 宁利中 晏成和 池德龙 周忠浩 孙颉 杨正瓴 杜学领 白龙亮 马金龙 刘炜 李东风 陈蕴真

该博文允许注册用户评论 请点击登录 评论 (15 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-23 16:01

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部