||
$d_{j,k}=\sqrt{(x_{j}-x_{k})^2 +(y_{j}-y_{k})^2}$
$f(x, y; \delta, b)=\frac{ b\Gamma(3/b)}{2\pi\delta^2\Gamma(2/b)^3}e^{(\frac{\Gamma(3/b)d}{\Gamma(2/b)\delta})^2}$
$\pi_{r, jk}=\frac{F_{r,k}f(d_{jk}; \delta, b))}{\sum_{l:fathers}F_{r,l}f(d_{jl};\delta,b)}$
$L(g|\alpha_{COV}, \delta, b, s, m) = \prod_{o:offspring}[sT(g_{0}|g_{j_{0}}, g_{j_{0}}) + mT(g_{0}|g_{j_{0}}, BAF) +(1-s-m)\sum_{k:father}\pi_{j_{0}k}T(g_{0}|g_{j_{0}}, g_{k})]$
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-27 07:38
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社