张金龙的博客分享 http://blog.sciencenet.cn/u/zjlcas 物种适应性、分布与进化

博文

R语言:常用统计检验方法

已有 31030 次阅读 2009-6-25 00:36 |个人分类:生活点滴|系统分类:科研笔记

 R语言:常用统计检验方法<一>

写在前面

R已经成为当前国际学术界最流行的统计和绘图软件之一,该语言较为简单易学,统计分析功能强大,且具有很强的绘图功能,能够绘制学术出版要求的多种图表.R语言在生物信息学,进化生物学、生态学与环境、经济学、语言学等领域有着极为广泛的应用。

R软件是跨平台的,可以在Linux, MacOs, Windows等多种系统上运行。针对每个研究方向,有大量的科研人员编写了相关的程序包,可以导入到基本的程序平台上运行。现有的程序包已经超过了1800个,并且还在增加中。

不仅如此,R是完全免费的,而且全部代码是公开的。

读者可以到 http://cran.cnr.berkeley.edu/bin/windows/base/R-2.9.0-win32.exe

下载windows版的R软件,安装程序仅为30M。

学习并掌握R语言,对于需要用到统计学的研究人员和学生都是非常必要的。

这里选取了R语言中若干操作实例,所有的命令行均可以在R中运行,并得到结果。

正态总体均值的假设检验
t检验
单个总体
例一
某种元件的寿命X(小时),服从正态分布,N(mu,sigma^2),其中mu,sigma^2均未知,16只元件的寿命如下:问是否有理由认为元件的平均寿命大于255小时。
命令:
X<-c(159, 280, 101, 212, 224, 379, 179, 264,
222, 362, 168, 250, 149, 260, 485, 170)
t.test(X, alternative = "greater", mu = 225)
两个总体
例二
X为旧炼钢炉出炉率,Y为新炼钢炉出炉率,问新的操作能否提高出炉率
命令:
X<-c(78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7,77.3)
Y<-c(79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1)
t.test(X, Y, var.equal=TRUE, alternative = "less")
成对数据t检验
例三
对每个高炉进行配对t检验
命令:
X<-c(78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7,77.3)
Y<-c(79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1)
t.test(X-Y, alternative = "less")

正态总体方差的假设检验
例四
从小学5年级男生中抽取20名,测量其身高(厘米)如下:
问,在0.05显著性水平下,
平均值是否等于149
sigma^2 是否等于 75
命令:
X<-scan()
136 144 143 157 137 159 135 158 147 165
158 142 159 150 156 152 140 149 148 155
var.test(X,Y)
例五
对炼钢炉的数据进行分析
命令:
X<-c(78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7,77.3)
Y<-c(79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1)
var.test(X,Y)
二项分布的总体检验
例六 有一批蔬菜种子的平均发芽率为P=0.85,现在随机抽取500粒,用种衣剂进行浸种处理,结果有445粒发芽,问种衣剂有无效果。
命令:
binom.test(445,500,p=0.85)
例七 按照以往经验,新生儿染色体异常率一般为1%,某医院观察了当地400名新生儿,有一例染色体异常,问该地区新生儿染色体是否低于一般水平?
命令:
binom.test(1,400,p=0.01,alternative="less")
非参数检验
#数据是否正态分布的Neyman-Pearson 拟合优度检验-chisq
例八
5种品牌啤酒爱好者的人数如下
A 210
B 312
C 170
D 85
E 223
问不同品牌啤酒爱好者人数之间有没有差异?
命令:
X<-c(210, 312, 170, 85, 223)
chisq.test(X)
例九
检验学生成绩是否符合正态分布
命令:
X<-scan()
25 45 50 54 55 61 64 68 72 75 75
78 79 81 83 84 84 84 85 86 86 86
87 89 89 89 90 91 91 92 100
A<-table(cut(X, br=c(0,69,79,89,100)))
p<-pnorm(c(70,80,90,100), mean(X), sd(X))
p<-c(p[1], p[2]-p[1], p[3]-p[2], 1-p[3])
chisq.test(A,p=p)
# cut 将变量区域划分为若干区间
# table 计算因子合并后的个数
# 均值之间有无显著区别
大麦的杂交后代芒性状的比例 无芒:长芒: 短芒=9:3:4,而实际观测值为335:125:160 ,检验观测值是否符合理论假设?
命令:
chisq.test(c(335, 125, 160), p=c(9,3,4)/16)

例十
# 现有42个数据,分别表示某一时间段内电话总机借到呼叫的次数,
# 接到呼叫的次数 0   1   2   3   4   5   6
# 出现的频率     7   10  12  8   3   2   0
# 问:某个时间段内接到的呼叫次数是否符合Possion分布?
命令:
x<-0:6
y<-c(7,10,12,8,3,2,0)
mean<-mean(rep(x,y))
q<-ppois(x,mean)
n<-length(y)
p[1]<-q[1]
p[n]<-1-q[n-1]
for(i in 2:(n-1))
p<-q-q
chisq.test(y, p=p)
Z<-c(7, 10, 12, 8)
n<-length(Z); p<-p[1:n-1]; p[n]<-1-q[n-1]
chisq.test(Z, p=p)

内容来自
薛毅 陈立萍 《统计建模与R软件》 清华大学出版社 2006



https://blog.sciencenet.cn/blog-255662-240107.html

上一篇:什么是箱线图
下一篇:R语言:常用统计检验-续
收藏 IP: .*| 热度|

0

发表评论 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 02:05

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部