||
吉林大学:杨学祥,杨冬红
关键提示:我们在2021年10月31日指出,与2019年相比,2021年太阳活动增强非常明显。紫外线杀毒作用增强,导致新冠病毒频繁变异以适应2020年和2021年太阳活动增强。病毒变异的一般趋势:适应性增强,毒性变弱,最后消失。
http://blog.sciencenet.cn/blog-2277-1310301.html
奥密克戎变异株正在消灭德尔塔变异株,符合这一条件:适应性增强,毒性减弱,最后消失。
https://blog.sciencenet.cn/blog-2277-1320841.html
湖北大学生命科学学院教授陈纯琪解释道,病毒的变异没有方向性,可能变强也可能变弱。变强的病毒对宿主产生的危害较大,因而较难进行大范围传播。而变弱的病毒,对宿主造成的损伤较小,其在宿主身上就能停留更长时间,同时由于其对宿主影响小,不会太影响宿主进行活动,因此变相促进了病毒的传播。从某种程度上来说,变弱的病毒反而更容易传播。
一项来自南非的流行病学研究以及来自英国的流行病学研究都表明,感染奥密克戎的人群中出现重症的概率,比感染德尔塔的下降了25%左右。
同时,在《化学信息与建模杂志》上刊发的另一项研究中,研究人员用人工智能模型深入分析了奥密克戎变体的感染性、疫苗的突破性和抗体抗性。结果表明,奥密克戎的感染性是原始新冠病毒的10倍以上,比德尔塔感染性高出2.8倍。
“病毒复制次数越多,说明其感染人数越多,它发生突变的几率就越大、出现变体的数量就越多。奥密克戎就是这样,它可以感染大量的宿主,并可与宿主更长时间的共存,所以人们就会看到更多的奥密克戎变体的存在。”陈纯琪表示,同时奥密克戎感染性更强,感染性强的变异株也会逐渐取代感染性弱的变异株。当感染德尔塔的人数增多,人群中更多人体内产生了针对德尔塔的保护性免疫反应,即形成了群体免疫,使得德尔塔感染者减少,即传染源减少,其感染新宿主的难度就增加了,它就会变得越来越少,甚至最终可能会消失。这也是后面出现的新冠病毒变异株,往往会取代前面流行的变异株的原因。
相关报道
||
奥密克戎变异株正在消灭德尔塔变异株:适应性增强,毒性减弱,最后消失
吉林大学:杨学祥,杨冬红
关键提示:我们在2021年10月31日指出,与2019年相比,2021年太阳活动增强非常明显。紫外线杀毒作用增强,导致新冠病毒频繁变异以适应2020年和2021年太阳活动增强。病毒变异的一般趋势:适应性增强,毒性变弱,最后消失。
http://blog.sciencenet.cn/blog-2277-1310301.html
奥密克戎变异株正在消灭德尔塔变异株,符合这一条件:适应性增强,毒性减弱,最后消失。
新冠变异病毒再变异:适应性增强,毒性减弱,最后消失
我们在2020年2月1日指出,太阳在2019年11月14日开始进入无黑子期,一直持续到了12月23日,四十天的“无黑子”期与2019年12月开始的疫情完全重合。
http://blog.sciencenet.cn/blog-2277-1216447.html
2021年1月1日-2月19日有30天没有太阳黑子,约占总天数的3/5。与2019年相比,2021年太阳活动增强非常明显。紫外线杀毒作用增强,导致新冠病毒频繁变异以适应2020年和2021年太阳活动增强。
2023-2025年为月亮赤纬角最大值时期,全球气候变冷,有利于病毒繁殖和传播;2024-2025年为太阳黑子峰值时期,病毒变异达到峰值,形成大爆发(冠状病毒2002年SARS和2014年中东呼吸综合症都发生在太阳黑子峰值时期)。
2030-2035年为可能的太阳黑子谷值时期,新冠病毒可能重返地球。
据2020年2月观察计算:太阳表面已经几乎330天没有出现明显太阳黑子了。也就是说,过去一年中有90%的时间太阳活动处于完全低迷状态。
2020年6-12月没有太阳黑子158天,占总天数214天的73.8%。太阳黑子活动增强明显。
2024-2025年为太阳黑子峰值时期,病毒变异达到峰值。一旦太阳黑子转向极小期,太阳黑子减少,就会形成变异病毒大爆发(冠状病毒2002年SARS和2014年中东呼吸综合症都发生在太阳黑子峰值时期)。
http://blog.sciencenet.cn/blog-2277-1273168.html
http://blog.sciencenet.cn/blog-2277-1273380.html
从全球病例数可以看出:从2月底到4月底,全球病例数上升,然后到6月底有所下降,到8月底再次上升,此后一直在下降。这种模式在印度、印度尼西亚、泰国、英国、法国和西班牙等国也很明显。
我们的数据统计表明,太阳黑子日平均相对数在2021年2月为7.11,在3月为20.61, 在4月为22.67,在5月为20.03,在6月为24.36,在7月为35.87,在8月为22.77,在9月为51.97,在10月为36.61。这完全符合全球疫情的发展过程。
http://blog.sciencenet.cn/blog-2277-1274848.html
http://blog.sciencenet.cn/blog-2277-1306417.html
http://blog.sciencenet.cn/blog-2277-1307579.html
2019年太阳黑子最小值已经过去,2025年太阳黑子最大值就要到来。新冠病毒是太阳黑子极小值的产物,天生惧怕太阳黑子。印度发现240种变种病毒,应对和适应太阳黑子不断增强,这是新冠病毒继续生存的必然结果。
http://blog.sciencenet.cn/blog-2277-1273380.html
病毒变异的一般趋势:适应性增强,毒性变弱,最后消失。
http://blog.sciencenet.cn/blog-2277-1310301.html
日本疫情神秘消退与太阳黑子增强以及太阳风暴爆发相关
2021年10月29日太阳风暴和新冠疫情响应
2021年8-10月太阳黑子明显增加和日本新冠疫情神秘消退对应
2021年9-10月太阳黑子和疫情监测
太阳黑子增加,疫情减轻。太阳黑子减少,疫情加重。太阳黑子杀死病毒。
由于连日来太阳活动活跃,耀斑引发的太阳风暴在10月12日抵达地球,带来了地磁暴,同时也造成在纬度较低地区也能看到极光。不仅加拿大,美国和英国的一些地区也报告出现了极光。这种现象可能将持续2-3天。
太阳风暴的等级从 G1 到 G5,从高到低排名。此次袭击地球的太阳风暴等级为G2,据说即使是 G2太阳风暴,如果与卫星接触,也有可能导致电力短缺和无线电中断。风暴的等级越高,它的磁场就越强,影响也越大。
虽然此次风暴等级只是“中等”,但雷丁大学的马修·欧文教授警告说,我们不应该排除未来 G5 风暴袭击地球的可能性。
https://www.sohu.com/a/494868850_121118710
9月份太阳黑子相对数猛增导致新冠疫情减轻
我们的数据统计表明,太阳黑子日平均相对数在2021年2月为7.11,在3月为20.61, 在4月为22.67,在5月为20.03,在6月为24.36,在7月为35.87,在8月为22.77,在9月为51.97,在10月为36.61(在11月为36)。这一变化趋势与全球疫情拐点和日本病毒消退基本符合。增强的太阳黑子灭杀病毒,是疫情好转的主要原因。
http://blog.sciencenet.cn/blog-2277-1307579.html
http://blog.sciencenet.cn/blog-2277-1307880.html
我们多次指出,2021年12月至2022年1-2月为南半球夏季,南半球国家疫情减轻,如果防护得当,新冠疫情可能在南半球结束。
我们在2021年10月20日指出,目前南半球进入春夏季,新冠疫情明显消退(如巴西、阿根廷和南非),有望在2022年1-2月完全消失;而北半球进入秋冬季,新冠疫情可能持续到秋冬季,最迟在夏季消失。英国是北半球国家,2021年12月至2022年1-2月为新冠疫情高峰时期,不加强抗疫力度,将带来严重后果,直接威胁2022年6-8月夏季全球疫情的消失。
关注2021年12月至2022年1-2月北半球冬季中太阳黑子减少。
http://blog.sciencenet.cn/blog-2277-1309249.html
2021年12月15-30日太阳活动进入异常峰值。
我们的数据统计表明,太阳黑子日平均相对数在2021年2月为7.11,在3月为20.61, 在4月为22.67,在5月为20.03,在6月为24.36,在7月为35.87,在8月为22.77,在9月为51.97,在10月为36.61,在11月为36,12月为64.74。
12月进入太阳黑子异常峰值。如果2022年1-2月太阳黑子异常增强持续,则表明新冠疫情结束为期不远。
图1 2021年2-12月太阳黑子每月日平均相对数
2021-2025年太阳黑子的变化趋势
在2021年12月至2022年年2月为北半球冬季,是太阳黑子低值时期,新冠疫情进入最后一个高潮,在2022年6-8月夏季的太阳黑子高值时期疫情趋于结束。目前南半球处于春夏季,疫情正在减弱。
太阳活动的峰值跟谷值相比,太阳辐射的强度变化可能只有千分之一,这是对太阳辐射总体而言。事实上,在太阳黑子峰值时期,太阳辐射的强度变化集中在紫外线光谱区,在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。这是太阳黑子延长极小期瘟疫频发的原因,也是太阳黑子峰年病毒被大量灭杀的原因。
http://blog.sciencenet.cn/blog-2277-1310272.html
2019年为太阳黑子极小值,新冠病毒爆发表明它天生惧怕太阳黑子。2025年为太阳黑子极大值,现在太阳黑子相对数逐年增加,绝杀新冠病毒的日子不会太远。
http://blog.sciencenet.cn/blog-2277-1310700.html
http://blog.sciencenet.cn/blog-2277-1311108.html
太阳风暴绝杀新冠病毒:南美洲最显著
太阳黑子增加,疫情减轻。太阳黑子减少,疫情加重。2021年11-12月和2022年1-2月,南半球处于春夏季太阳黑子峰值时期,新冠疫情处于低谷;北半球处于秋冬季太阳黑子谷值时期,新冠疫情处于高峰。
由于连日来太阳活动活跃,耀斑引发的太阳风暴在10月12日抵达地球,带来了地磁暴,同时也造成在纬度较低地区也能看到极光。不仅加拿大,美国和英国的一些地区也报告出现了极光。这种现象可能将持续2-3天。
太阳风暴的等级从 G1 到 G5,从高到低排名。此次袭击地球的太阳风暴等级为G2,据说即使是 G2太阳风暴,如果与卫星接触,也有可能导致电力短缺和无线电中断。风暴的等级越高,它的磁场就越强,影响也越大。
虽然此次风暴等级只是“中等”,但雷丁大学的马修·欧文教授警告说,我们不应该排除未来 G5 风暴袭击地球的可能性。
https://www.sohu.com/a/494868850_121118710
10月30-31日和11月3-5日太阳风暴再次光临地球,杀灭新冠病毒,使疫情减轻。 南半球目前处于春夏季,面对太阳的面积比北半球大,受到太阳风暴的影响也比北半球大,南半球国家疫情减弱也最显著(见;巴西、阿根廷和南非疫情数据)。
太阳风暴灭杀病毒的历史记录
太阳风暴定期为地球杀灭病毒,是人类生存不可或缺的重要事件,西班牙流感和新冠疫情证实了这一点。
表2 世界历次流行亚型和太阳风暴记录统计表
年 限 亚 型 名 称 首发地区 拉马德雷 太阳风暴
1510 流感 英国
1580 流感 美洲土著流感 美洲 1582年
1675 流感
1733 流感
1742-1743 流感 东欧流感 东欧
1837 流感 欧洲流感 柏林,西班牙 1859年
1889-1894 流感 俄罗斯流感 俄罗斯
1890- H2N2 EI 英格兰 冷位相
1900- H3N8 EI 英 国 冷位相
1918#- H1N1 SI 西班牙流感 美国 冷位相 1921年
1957#- H2N2 亚洲流感 中国贵州 冷位相 1958年
1967年
1968#- H3N2 香港流感 中国香港 冷位相 1972年
1975年
1977-新H1N1 EII俄罗斯流感 俄罗斯 冷暖边界 1989年
1997- H5N1 Al 中国香港 暖位相
1999- H9N2 Al 中国 暖位相
2002* SARS 非典型肺炎 中国 冷位相 2003年
2004- H5N1 Al 越南 冷位相
2009* H5N1 甲型流感 墨西哥 冷位相 2010-2011年
2012* MERS 中东呼吸综合征 沙特阿拉伯 冷位相 2012-2014年
2016* MERS 中东呼吸综合征 韩国 冷位相 2017年
2019* 2019-nCoV 新型冠状病毒 冷位相 2021年
2023-2026年?
注:带*号项是笔者加的,带#号者为最强爆发。
http://blog.sciencenet.cn/blog-2277-1215691.html
http://blog.sciencenet.cn/blog-2277-1216143.html
http://blog.sciencenet.cn/blog-2277-1304134.html
http://blog.sciencenet.cn/blog-2277-1308292.html
http://blog.sciencenet.cn/blog-2277-1308254.html
https://tech.sina.com.cn/roll/2020-03-29/doc-iimxyqwa3856397.shtml
https://www.doc88.com/p-9445767339134.html
1918-1920年西班牙流感大爆发和1921年爆发了超级太阳风暴之间,并不存在因果关系。而1918-1920年西班牙流感结束和1921年爆发了超级太阳风暴之间却可能存在因果联系:超级太阳风暴灭杀了西班牙流感病毒。
如果在2025年太阳黑子峰值之前,2021-2024年爆发超级太阳风暴,那么新冠疫情结束就为期不远了。
“超级太阳风暴”与病毒大流行:超级太阳风暴会成为一场灾难还是福音? 让我们拭目以待。
http://blog.sciencenet.cn/blog-2277-1289287.html
http://blog.sciencenet.cn/blog-2277-1311344.html
https://blog.sciencenet.cn/blog-2277-1311404.html
https://blog.sciencenet.cn/blog-2277-1316303.html
https://blog.sciencenet.cn/blog-2277-1316828.html
大自然已经向新冠疫情宣战,新冠病毒肆虐全球的日子就要结束了。
https://blog.sciencenet.cn/blog-2277-1319390.html
https://blog.sciencenet.cn/blog-2277-1320638.html
https://blog.sciencenet.cn/blog-2277-1320841.html
2022年05月26日 07:23 新浪网
近日,《中国疾病预防控制中心周报(英文)》报告了我国首例确诊感染新冠病毒奥密克戎亚型BA.2.12.1的境外输入病例的具体情况。这一病例系入境广东省广州市的境外旅客,已被转送到广州医科大学附属市第八医院接受治疗。
截至目前,已有多国报告发现奥密克戎亚型变异株BA.2.12.1、BA.4、BA.5和重组变异株XQ、XE、XM。奥密克戎持续“进化”令人困扰,那么新冠病毒会一直“变变变”吗?
为生存奥密克戎不得不“善变”
“新冠病毒之所以‘善变’,是因为它是RNA(核糖核酸)病毒。”天津大学生命科学学院教授王涛在接受记者采访时介绍,RNA病毒复制依赖于自身携带的RNA聚合酶,这种聚合酶纠错能力比较差,若病毒在复制时发生基因突变,聚合酶不会清除出现突变的基因。长此以往,突变基因就会在RNA病毒中不断积累,最终导致RNA病毒不停变异。
除此之外,新冠病毒“善变”是它生存下去的必然选择。
病毒是结构非常简单的微小生物,它不能单独生存,必须生存在其他生物的细胞内,这就决定了它必须依赖于宿主的细胞才能进行生存与繁殖。人类是新冠病毒的宿主,病毒和人类免疫系统的相互适应促使两者共同进化。“也就是说,病毒与宿主的相互作用使得它们不断地进化,最终得以共同生存。”王涛表示,“我们有时用军备竞赛来描述两者间的关系,如果人的免疫系统强大了,能压制住病毒,当病毒进入人体后就会被免疫系统清除掉;病毒为了活下去,也要提升自己的‘军备’,即不停地变异,以适应宿主免疫,而后病毒得以继续在宿主身上进行复制。”
在这场较量中,有时人类占上风,有时病毒占上风。
感染性强的变异株会替代弱的
不少人会感到疑惑,为什么现在除了奥密克戎,已经很少听到其他新冠病毒变异株了,似乎只有奥密克戎还在不停地“变变变”。
对此,湖北大学生命科学学院教授陈纯琪解释道,病毒的变异没有方向性,可能变强也可能变弱。变强的病毒对宿主产生的危害较大,因而较难进行大范围传播。而变弱的病毒,对宿主造成的损伤较小,其在宿主身上就能停留更长时间,同时由于其对宿主影响小,不会太影响宿主进行活动,因此变相促进了病毒的传播。从某种程度上来说,变弱的病毒反而更容易传播。
一项来自南非的流行病学研究以及来自英国的流行病学研究都表明,感染奥密克戎的人群中出现重症的概率,比感染德尔塔的下降了25%左右。
同时,在《化学信息与建模杂志》上刊发的另一项研究中,研究人员用人工智能模型深入分析了奥密克戎变体的感染性、疫苗的突破性和抗体抗性。结果表明,奥密克戎的感染性是原始新冠病毒的10倍以上,比德尔塔感染性高出2.8倍。
“病毒复制次数越多,说明其感染人数越多,它发生突变的几率就越大、出现变体的数量就越多。奥密克戎就是这样,它可以感染大量的宿主,并可与宿主更长时间的共存,所以人们就会看到更多的奥密克戎变体的存在。”陈纯琪表示,同时奥密克戎感染性更强,感染性强的变异株也会逐渐取代感染性弱的变异株。当感染德尔塔的人数增多,人群中更多人体内产生了针对德尔塔的保护性免疫反应,即形成了群体免疫,使得德尔塔感染者减少,即传染源减少,其感染新宿主的难度就增加了,它就会变得越来越少,甚至最终可能会消失。这也是后面出现的新冠病毒变异株,往往会取代前面流行的变异株的原因。
新冠病毒的变异速度并不算快
其实,不只是新冠病毒,自然界其他病毒也在不停地“变变变”。
中国疾病预防控制中心生物安全首席专家武桂珍认为,与其他病毒相比,新冠病毒的变异速度并不快,变异速度“只约为流感病毒的1/2、艾滋病毒的1/4”。
“单纯从变异角度来讲,与其他病毒相比,新冠病毒没有太大优势。但由于其传播力强,传播途径主要通过呼吸系统,这就增加了控制新冠病毒传播的难度。”陈纯琪进一步说,目前新冠病毒中的基因突变主要发生在刺突蛋白区域,新冠病毒通过其表面的刺突蛋白与人类细胞受体结合、侵入人体。而既往感染新冠病毒产生的抗体就附着在新冠病毒刺突蛋白与受体结合的位点上,一般来说它们是可以阻断这种结合的,但由于新冠病毒变异了,新型变异株能采用新方式与受体进行结合,那么已有免疫“武器”的威力就减弱了,这也是防控奥密克戎的难点所在。
在自然界,比新冠病毒传染性强的病毒有很多,比如麻疹病毒。“但麻疹病毒变异后就失去了传播力,而且它只有人类一个宿主,对付它打疫苗就非常有效。”王涛举例道,再比如丙型肝炎病毒,它的变异能力高于奥密克戎,但由于其只能通过血液或性传播,所以传播力远不如奥密克戎。
不过,新冠病毒变异还是有终极限制的。牛津大学病毒进化专家阿丽斯·卡佐拉奇斯认为,新冠病毒不大可能变异出一种集所有糟糕突变为一体的超级变异株。
https://k.sina.com.cn/article_5044281310_12ca99fde02001tu5o.html?from=news&subch=onews
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 06:00
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社