||
从“海底藏冷效应”到“海底藏温室气体效应”
吉林大学:杨冬红,杨学祥
1998年提出的 海底藏冷效应和海洋锅炉效应
海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的“冷能”由此而进入海洋。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的“冷积累”过程(见图1)。
我们在1996年建立了地球内核相对地壳地幔快速旋转的数学模型,被当年通过地震波测量结果所证实。由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,消除了“海洋藏冷效应”的“冷源”,形成全球无冰温暖气候,这个过程被称为“海洋锅炉效应”。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15℃,大气冷却了10-15℃,在古新世末不到6000年的时间内大洋底层水增温4℃以上。
海底藏冷效应和海洋锅炉效应受太阳活动的驱动,是太阳活动左右大冰期和小冰期的一个重要机制。海洋是能量的储库,无论是冷是热,都有一个长期的积累过程。
图1 海底藏冷效应和海洋锅炉效应
我们在2019年3月13日撰文指出,南大洋是地球上变冷最显著的地方,与温室效应背道而驰。究其原因,有以下四点:
首先,南大洋处于南半球,以海洋为主,大陆和人口较少,因而温室效应不显著。其次,南大洋有独立的温盐循环系统,形成表层和深海的高效冷循环,可将冷水和温室气体深埋在海底,完成“海底藏冷效应”。
https://blog.sciencenet.cn/blog-2277-1167362.html
海洋既是温室气体的贮存器也是火药桶
我们在2021年9月1日撰文指出, 海洋是温室气体的巨大贮存器,也是温室气体排放的火药桶,只要存储在海洋中的碳释放2 %,就将使大气中的CO2含量增加一倍。在1 个大气压下,海水温度从0℃升高为25℃,每克海水可释放约1 cm3体积的CO2,释放量与残留量的比值约为1:1。目前全球海洋溶解的CO2是大气中CO2的13倍,以此比例,海水升温25℃,大气中CO2的含量应该增加到现在的6.5倍,这表明白垩纪海洋增温释放的CO2是大气CO2浓度增高的主要来源[55]。
所以,海底藏冷效应通过冷水下沉,将温室气体封存在海底;海洋锅炉效应通过热水上升,将温室气体排放到大气。
https://blog.sciencenet.cn/blog-2277-1302377.html
我们在2021年8月18日指出, 温室气体在海水溶解度随温度降低而升高,冷水在沉入海底时携带大量温室气体,在低温高压下形成干冰和甲烷冰。
https://blog.sciencenet.cn/blog-2277-1300365.html
从海底藏冷效应到海洋锅炉效应
地球两极临近结冰的海水因为密度最大而沉入两极海底,自转离心力将较重的海水推向赤道海底,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流,这个过程被称为“海底藏冷效应”,是全球气候变冷的主要冷源。温室气体在海水中的溶解度伴随温度降低而提高,大量的温室气体通过“海底藏冷效应”而藏身在海底。我们称之为“海底藏温室气体效应”
北极冷海水在下沉过程中带动大西洋表面热海水流向北极,比如墨西哥暖流,将欧洲漂浮的微塑料带进北冰洋。因为欧洲漂浮的微塑料密度小不能沉入海底,所以积聚在北冰洋表面。欧洲漂浮的微塑料积聚到北冰洋的路径,就是“海底藏冷效应”的循环路径。
https://blog.sciencenet.cn/blog-2277-1330138.html
我们在2015年1月20日撰文提出两个新概念,大自然的温室气体“海底压缩贮存效应”和“海面减压释放效应”。
https://blog.sciencenet.cn/blog-2277-861071.html
相关文献
|||
大自然的温室气体“海底压缩贮存效应”和“海面减压释放效应”
杨学祥,杨冬红
2015年1月19日我们发表了《温室气体伴同冷水的深海循环:冰期时代的温室气体去向》博文。
http://blog.sciencenet.cn/blog-2277-860950.html
本文的重要性是给出了大气和海洋之间温室气体的自然循环:海底的巨大压力将温室气体压缩贮存,例如将甲烷变为“可燃冰”。人为温室气体的密闭封存不过是在简单地模仿自然过程。
可燃冰,即天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(Combustible ice)或者“固体瓦斯”和“气冰”。其实是一个固态块状物。天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。
可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80% 99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。西方学者称其为“21世纪能源”或“未来能源”。 1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。
探测资料显示,“可燃冰”为地球上所有已知天然气、原油和煤的碳量的二倍,从中逃逸出的气体形成的温室效应远大于人类活动。海洋锅炉效应是地下和海洋中温室气体进入大气的原因,核幔角动量交换和地球形变又是海洋锅炉效应的原因。
海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近[36]。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的“冷能”由此而进入海洋[12,17]。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的“冷积累”过程。
由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区(此处核幔速度差最大,积累的热能最多)。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,消除了海洋藏冷效应的“冷源”,形成全球无冰温暖气候,产生晚白垩纪赤道海洋表层低温之谜(当时温度为摄氏21度,比现代低6.5度,见图1)。我们称这个过程为海洋锅炉效应[6,7,12,17,20]。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15度[37,38]。这是典型的地、海、气相互作用。计算表明,一亿二千万年前形成翁通爪哇海台的海底热幔柱喷发,其释放的热量可使全球海水温度增高33度[6,12,20,38]。有证据表明,在古新世末不到6000年的时间内大洋底层水增温40C以上[2]。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视。
我们是在1998年首次提出海底藏冷效应和海洋锅炉效应,并指出海洋锅炉效应是地下和海洋中温室气体进入大气的原因,核幔角动量交换和地球形变又是海洋锅炉效应的原因。
温室气体在水中的溶解度伴随水温的降低而增大。由于冷水中含有较多的温室气体,所以,伴随两极冷水在海底的积累,温室气体也被压缩贮存在海底冷水之中。海底冷水温度的降低意味着温室气体的进一步压缩和全球气温变冷。我们称之为温室气体的“海底压缩贮存效应”。其相反过程为温室气体的“海面减压释放效应”:温室气体在水中的溶解度伴随水温的升高而减少。由于两极相对变暖的冷水中含有较少的温室气体,所以,伴随两极冷水在海底的升温,温室气体被压缩贮存在海底冷水之中数量也相对减少,海底冷水增温降低温室气体的溶解度,释放出的温室气体上升到海面,减压排入大气。
事实上,大气和海洋的温室气体交换是连续发生的,两极的冷水将温室气体带入海底,赤道处海水上升被加热向大气释放出温室气体,总体处于平衡状态之中。
地球对太阳光的反射率不是固定不变的,冰川消长、雪线的伸缩、大气透明度的增减、云层厚度的变化,都会影响地球的反光率,其中冰川和积雪的作用最大。在其它因素不变的条件下,微弱因素引发的气候变冷一旦启动,如下步骤将连续反复发生:冷的激发使冰川和积雪面积增加;冰川和积雪面积增加使地球反光率增大;增大的反光率就会导致地球接受太阳能量减少使气温进一步下降;以此形成不断增大的反复循环,可称之为“弱因迭代效应”。微弱因素引发的变暖会起到相反的效果。这是“弱因”打破地球复杂系统平衡的根本原因。
温室气体也具有“弱因迭代效应”:温室气体增加使气候变暖,气候变暖导致海温增加,海温增加将使海洋释放更多温室气体,以此形成反复循环。不过,海洋变暖的速度很缓慢,不如光反射率变化来得迅速。前者适于长周期变化循环,后者适于短周期变化循环。
太阳活动变化也具有“弱因迭代效应”:太阳活动减弱导致全球气温轻微下降,两极变冷导致冷水中溶解更多温室气体,使温室气体进入海底的数量增多;赤道轻微变冷导致上升冷水变热幅度减少,使温室气体进入大气的数量减少,这就打破了原有的进出平衡,导致更多的温室气体滞留在海底,使气温进一步变冷,如此迭代下去,大气中的温室气体越来越少,气温下降也就越来越强烈。
冰期时代的温室气体去哪了?结论是,温室气体伴同冷水的深海循环由大气进入海底。理论推导得出两个实用的指标:
其一,海底冷水温度的降低意味着温室气体由大气向海底积累;海底冷水温度的升高意味着温室气体由海洋向大气释放。
其二、海底冷水温度的降低意味着全球变冷;海底冷水温度的升高意味着全球变暖。
参考文献
1. 杨学祥, 陈震, 刘淑琴等. 地球内核快速旋转的发现与全球变化的轨道效应. 地学前缘, 1997, 4(1): 187-193.
Yang X X, Chen Z, Liu S Q, et al. The discovery of fast rotation of the earth’s inner core and orbital effect of global changes. Earth Science Frontiers (in Chinese), 1997, 4(1): 187-193.
2. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.
Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. Changchun:College of Geo-exploration Science and Technology, Jilin University.
3. 杨冬红, 杨学祥.2013.a 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 28(1):58-70。
Yang D H, Yang XX. 2013a. Study and model on variation ofEarth’s Rotation speed. Progress inGeophysics (in Chinese), 28(1):58-70.
4. 杨学祥, 陈殿友. 地球差异旋转动力学. 长春: 吉林大学出版社, 1998, 2, 99~104, 196~198
Yang X X, Chen D Y. Geodynamics of the Earth’s differential rotation and revolution (in Chinese). Changchun: Jilin University Press, 1998, 2, 99~104, 196~198
5. 杨学祥,陈殿友。火山活动与天文周期。地质论评。1999,45(增刊):33~42 YANG Xue-xiang, CHEN Dian-you. The Volcanoes and the Astronomical Cycles .Geological Review. 1999,45(supper):33~42.
6. 杨学祥,陈殿友。地核的动力作用。地球物理学进展,,1996,11(1):68-74。
7. 杨学祥,张玺云。热幔柱的启动动力。世界地质, 1996,15(2):68-74。
8. 杨学祥,等。地球内核快速旋转的发现及其动力学意义。地壳形变与地震,1998, 18(1):68-74。
9. 杨学祥,陈殿友。热幔柱构造和地核热能。地壳形变与地震。1996, 16(1):27-36。
10. 杨学祥,等。地核能量的积累和释放。地壳形变与地震。1996,, 1,6(4):85-92。
11. 杨学祥,等。对地球质心偏移及板块驱动力的讨论。长春地质学院学报。1993,, 23(4):470-475。
12. Song X D, Richards P G. Seismological evidence for differential rotation of the Earth’s inner core. Nature, 1966, 382: 221-224.
http://blog.sciencenet.cn/blog-2277-860950.html
https://blog.sciencenet.cn/blog-2277-861071.html
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-11 02:47
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社